Results 1 - 10
of
114,171
RESEARCH ARTICLE Network Plasticity as Bayesian Inference
"... ☯ These authors contributed equally to this work. ..."
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and bio-sequence analysis, and KFMs have bee ..."
Abstract
-
Cited by 758 (3 self)
- Add to MetaCart
been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete
Bayesian Network Classifiers
, 1997
"... Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restr ..."
Abstract
-
Cited by 788 (23 self)
- Add to MetaCart
restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly
Bayesian Interpolation
- Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of model--comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and model--comparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract
-
Cited by 721 (17 self)
- Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of model--comparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and model--comparison is demonstrated by studying the inference problem of interpolating noisy data
A Practical Bayesian Framework for Backprop Networks
- Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract
-
Cited by 496 (20 self)
- Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
A Bayesian method for the induction of probabilistic networks from data
- MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract
-
Cited by 1381 (32 self)
- Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction
Variational algorithms for approximate Bayesian inference
, 2003
"... The Bayesian framework for machine learning allows for the incorporation of prior knowledge in a coherent way, avoids overfitting problems, and provides a principled basis for selecting between alternative models. Unfortunately the computations required are usually intractable. This thesis presents ..."
Abstract
-
Cited by 430 (8 self)
- Add to MetaCart
a unified variational Bayesian (VB) framework which approximates these computations in models with latent variables using a lower bound on the marginal likelihood. Chapter 1 presents background material on Bayesian inference, graphical models, and propaga-tion algorithms. Chapter 2 forms
Loopy Belief Propagation for Approximate Inference: An Empirical Study
- In Proceedings of Uncertainty in AI
, 1999
"... Recently, researchers have demonstrated that "loopy belief propagation" --- the use of Pearl's polytree algorithm in a Bayesian network with loops --- can perform well in the context of error-correcting codes. The most dramatic instance of this is the near Shannon-limit performa ..."
Abstract
-
Cited by 680 (18 self)
- Add to MetaCart
inference scheme in a more general setting? We compare the marginals computed using loopy propagation to the exact ones in four Bayesian network architectures, including two real-world networks: ALARM and QMR. We find that the loopy beliefs often converge and when they do, they give a good
Estimating Continuous Distributions in Bayesian Classifiers
- In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, 1995
"... When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon the normality ..."
Abstract
-
Cited by 489 (2 self)
- Add to MetaCart
When modeling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous work has either solved the problem by discretizing, or assumed that the data are generated by a single Gaussian. In this paper we abandon
A Bayesian Framework for the Analysis of Microarray Expression Data: Regularized t-Test and Statistical Inferences of Gene Changes
- Bioinformatics
, 2001
"... Motivation: DNA microarrays are now capable of providing genome-wide patterns of gene expression across many different conditions. The first level of analysis of these patterns requires determining whether observed differences in expression are significant or not. Current methods are unsatisfactory ..."
Abstract
-
Cited by 485 (6 self)
- Add to MetaCart
due to the lack of a systematic framework that can accommodate noise, variability, and low replication often typical of microarray data. Results: We develop a Bayesian probabilistic framework for microarray data analysis. At the simplest level, we model log-expression values by independent normal
Results 1 - 10
of
114,171