• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 20,994
Next 10 →

Network Flow Algorithms for Structured Sparsity

by Julien Mairal, Rodolphe Jenatton, Guillaume Obozinski, Francis Bach
"... We consider a class of learning problems that involve a structured sparsity-inducing norm defined as the su mof ℓ∞-norms over groups of variables. Whereas a lot of effort has been put in developing fast optimization methods when the groups are disjoint or embedded in a specific hierarchical structur ..."
Abstract - Cited by 55 (14 self) - Add to MetaCart
structure, we address here the case of general overlapping groups. To this end, we show that the corresponding optimization problem is related to network flow optimization. More precisely, the proximal problem associated with the norm we consider is dual to a quadratic min-cost flow problem. We propose

Theoretical improvements in algorithmic efficiency for network flow problems

by Jack Edmonds, Richard M. Karp - , 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimum-cost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract - Cited by 560 (0 self) - Add to MetaCart
This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimum-cost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps

An algorithm for drawing general undirected graphs

by Tomihisa Kamada, Satoru Kawai - Information Processing Letters , 1989
"... Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, data-flow graphs, Petri nets, and entit ..."
Abstract - Cited by 698 (2 self) - Add to MetaCart
Graphs (networks) are very common data structures which are handled in computers. Diagrams are widely used to represent the graph structures visually in many information systems. In order to automatically draw the diagrams which are, for example, state graphs, data-flow graphs, Petri nets

Optimization Flow Control, I: Basic Algorithm and Convergence

by Steven H. Low, David E. Lapsley - IEEE/ACM TRANSACTIONS ON NETWORKING , 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract - Cited by 694 (64 self) - Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm

Fibonacci Heaps and Their Uses in Improved Network optimization algorithms

by Michael L. Fredman, Robert Endre Tarjan , 1987
"... In this paper we develop a new data structure for implementing heaps (priority queues). Our structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin and studied further by Brown. F-heaps support arbitrary deletion from an n-item heap in qlogn) amortized tim ..."
Abstract - Cited by 739 (18 self) - Add to MetaCart
time and all other standard heap operations in o ( 1) amortized time. Using F-heaps we are able to obtain improved running times for several network optimization algorithms. In particular, we obtain the following worst-case bounds, where n is the number of vertices and m the number of edges

A new approach to the maximum flow problem

by Andrew V. Goldberg, Robert E. Tarjan - JOURNAL OF THE ACM , 1988
"... All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract - Cited by 672 (33 self) - Add to MetaCart
All previously known efficient maximum-flow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length augmenting paths at once (using the layered network approach of Dinic). An alternative method based

Consensus and cooperation in networked multi-agent systems

by Reza Olfati-Saber , J Alex Fax , Richard M Murray , Reza Olfati-Saber , J Alex Fax , Richard M Murray - Proceedings of the IEEE , 2007
"... Summary. This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An ove ..."
Abstract - Cited by 807 (4 self) - Add to MetaCart
networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster

Virtual clock: A new traffic control algorithm for packet switching networks

by Lixia Zhang - In Proc. ACM SIGCOMM , 1990
"... A challenging research issue in high speed networking is how to control the transmission rate of statistical data P OWS. This paper describes a new algorithm, Virtual-Clock, for data trafic control in high-speed networks. VirtualClock maintains the statistical multiplexing flexibility of packet swit ..."
Abstract - Cited by 617 (4 self) - Add to MetaCart
A challenging research issue in high speed networking is how to control the transmission rate of statistical data P OWS. This paper describes a new algorithm, Virtual-Clock, for data trafic control in high-speed networks. VirtualClock maintains the statistical multiplexing flexibility of packet

Finding community structure in networks using the eigenvectors of matrices

by M. E. J. Newman , 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract - Cited by 502 (0 self) - Add to MetaCart
number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in networks and a new centrality measure that identifies those vertices that occupy central positions within the communities to which they belong

Randomized Gossip Algorithms

by Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, Devavrat Shah - IEEE TRANSACTIONS ON INFORMATION THEORY , 2006
"... Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract - Cited by 532 (5 self) - Add to MetaCart
Motivated by applications to sensor, peer-to-peer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join
Next 10 →
Results 1 - 10 of 20,994
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University