Results 1  10
of
419,460
Nearest neighbor queries in metric spaces
 Discrete Comput. Geom
, 1997
"... Given a set S of n sites (points), and a distance measure d, the nearest neighbor searching problem is to build a data structure so that given a query point q, the site nearest to q can be found quickly. This paper gives data structures for this problem when the sites and queries are in a metric spa ..."
Abstract

Cited by 117 (1 self)
 Add to MetaCart
Given a set S of n sites (points), and a distance measure d, the nearest neighbor searching problem is to build a data structure so that given a query point q, the site nearest to q can be found quickly. This paper gives data structures for this problem when the sites and queries are in a metric
Nearest Neighbor Queries
, 1995
"... A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient bra ..."
Abstract

Cited by 594 (1 self)
 Add to MetaCart
A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 1017 (40 self)
 Add to MetaCart
The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the d
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 983 (32 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any
Fast approximate nearest neighbors with automatic algorithm configuration
 In VISAPP International Conference on Computer Vision Theory and Applications
, 2009
"... nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these highdimensional problems ..."
Abstract

Cited by 448 (2 self)
 Add to MetaCart
nearestneighbors search, randomized kdtrees, hierarchical kmeans tree, clustering. For many computer vision problems, the most time consuming component consists of nearest neighbor matching in highdimensional spaces. There are no known exact algorithms for solving these high
Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces
, 1993
"... We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are highdim ..."
Abstract

Cited by 356 (5 self)
 Add to MetaCart
We consider the computational problem of finding nearest neighbors in general metric spaces. Of particular interest are spaces that may not be conveniently embedded or approximated in Euclidian space, or where the dimensionality of a Euclidian representation is very high. Also relevant are high
When Is "Nearest Neighbor" Meaningful?
 In Int. Conf. on Database Theory
, 1999
"... . We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches the distance ..."
Abstract

Cited by 402 (1 self)
 Add to MetaCart
. We explore the effect of dimensionality on the "nearest neighbor " problem. We show that under a broad set of conditions (much broader than independent and identically distributed dimensions), as dimensionality increases, the distance to the nearest data point approaches
Distance metric learning for large margin nearest neighbor classification
 In NIPS
, 2006
"... We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven ..."
Abstract

Cited by 685 (15 self)
 Add to MetaCart
We show how to learn a Mahanalobis distance metric for knearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the knearest neighbors always belong to the same class while examples from different classes are separated by a large margin
Fault Localization with Nearest Neighbor Queries
, 2003
"... We present a method for performing fault localization using similar program spectra. Our method assumes the existence of a faulty run and a larger number of correct runs. It then selects according to a distance criterion the correct run that most resembles the faulty run, compares the spectra corres ..."
Abstract

Cited by 227 (2 self)
 Add to MetaCart
We present a method for performing fault localization using similar program spectra. Our method assumes the existence of a faulty run and a larger number of correct runs. It then selects according to a distance criterion the correct run that most resembles the faulty run, compares the spectra corresponding to these two runs, and produces a report of "suspicious" parts of the program. Our method is widely applicable because it does not require any knowledge of the program input and no more information from the user than a classification of the runs as either "correct" or "faulty". To experimentally validate the viability of the method, we implemented it in a tool, WHITHER using basic block profiling spectra. We experimented with two different similarity measures and the Siemens suite of 132 programs with injected bugs. To measure the success of the tool, we developed a generic method for establishing the quality of a report. The method is based on the way an "ideal user" would navigate the program using the report to save effort during debugging. The best results we obtained were, on average, above 50%, meaning that our ideal user would avoid looking at half of the program.
Discriminant Adaptive Nearest Neighbor Classification
, 1994
"... Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant an ..."
Abstract

Cited by 322 (1 self)
 Add to MetaCart
Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions. We propose a locally adaptive form of nearest neighbor classification to try to ameliorate this curse of dimensionality. We use a local linear discriminant
Results 1  10
of
419,460