Results 1 - 10
of
6,132
LabelMe: A Database and Web-Based Tool for Image Annotation
, 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a web-based tool that allows easy image annotation and instant sha ..."
Abstract
-
Cited by 679 (46 self)
- Add to MetaCart
sharing of such annotations. Using this annotation tool, we have collected a large dataset that spans many object categories, often containing multiple instances over a wide variety of images. We quantify the contents of the dataset and compare against existing state of the art datasets used for object
Neural Network-Based Face Detection
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 1998
"... We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present ..."
Abstract
-
Cited by 1206 (22 self)
- Add to MetaCart
We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present
Object Recognition from Local Scale-Invariant Features
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract
-
Cited by 2739 (13 self)
- Add to MetaCart
in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients
Robust wide baseline stereo from maximally stable extremal regions
- In Proc. BMVC
, 2002
"... The wide-baseline stereo problem, i.e. the problem of establishing correspon-dences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions, is introduced. Extremal regions possess highly de-sir ..."
Abstract
-
Cited by 1016 (35 self)
- Add to MetaCart
-sirable properties: the set is closed under 1. continuous (and thus projective) transformation of image coordinates and 2. monotonic transformation of im-age intensities. An efficient (near linear complexity) and practically fast de-tection algorithm (near frame rate) is presented for an affinely-invariant stable
W4: Real-time surveillance of people and their activities
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2000
"... w4 is a real time visual surveillance system for detecting and tracking multiple people and monitoring their activities in an outdoor environment. It operates on monocular gray-scale video imagery, or on video imagery from an infrared camera. W4 employs a combination of shape analysis and tracking t ..."
Abstract
-
Cited by 709 (9 self)
- Add to MetaCart
w4 is a real time visual surveillance system for detecting and tracking multiple people and monitoring their activities in an outdoor environment. It operates on monocular gray-scale video imagery, or on video imagery from an infrared camera. W4 employs a combination of shape analysis and tracking
Multiresolution grayscale and rotation invariant texture classification with local binary patterns
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2002
"... This paper presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain ..."
Abstract
-
Cited by 1299 (39 self)
- Add to MetaCart
that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "
Contour Detection and Hierarchical Image Segmentation
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2010
"... This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our segmentati ..."
Abstract
-
Cited by 389 (24 self)
- Add to MetaCart
This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization framework based on spectral clustering. Our
Modeling annotated data
- IN PROC. OF THE 26TH INTL. ACM SIGIR CONFERENCE
, 2003
"... We consider the problem of modeling annotated data—data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models that are aimed at such data, culminating in the Cor ..."
Abstract
-
Cited by 443 (12 self)
- Add to MetaCart
We consider the problem of modeling annotated data—data with multiple types where the instance of one type (such as a caption) serves as a description of the other type (such as an image). We describe three hierarchical probabilistic mixture models that are aimed at such data, culminating
Support vector machines for multiple-instance learning
- Advances in Neural Information Processing Systems 15
, 2003
"... This paper presents two new formulations of multiple-instance learning as a maximum margin problem. The proposed extensions of the Support Vector Machine (SVM) learning approach lead to mixed integer quadratic programs that can be solved heuristically. Our generalization of SVMs makes a state-of-the ..."
Abstract
-
Cited by 314 (2 self)
- Add to MetaCart
This paper presents two new formulations of multiple-instance learning as a maximum margin problem. The proposed extensions of the Support Vector Machine (SVM) learning approach lead to mixed integer quadratic programs that can be solved heuristically. Our generalization of SVMs makes a state
A general framework for object detection
- Sixth International Conference on
, 1998
"... This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representation of an object class derived from a statistical analysis of the class instances. By learning an object class in terms of ..."
Abstract
-
Cited by 395 (21 self)
- Add to MetaCart
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representation of an object class derived from a statistical analysis of the class instances. By learning an object class in terms
Results 1 - 10
of
6,132