Results 1  10
of
301,963
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
output representations. This paper compares these three approaches to a new technique in which errorcorrecting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 566 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string
Shiftable Multiscale Transforms
, 1992
"... Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavel ..."
Abstract

Cited by 557 (36 self)
 Add to MetaCart
. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call "shiftability". In the spatial domain, shiftability corresponds to a
Good quantum error correcting codes exist
 REV. A
, 1996
"... A quantum errorcorrecting code is defined to be a unitary mapping (encoding) of k qubits (2state quantum systems) into a subspace of the quantum state space of n qubits such that if any t of the qubits undergo arbitrary decoherence, not necessarily independently, the resulting n qubits can be used ..."
Abstract

Cited by 349 (9 self)
 Add to MetaCart
A quantum errorcorrecting code is defined to be a unitary mapping (encoding) of k qubits (2state quantum systems) into a subspace of the quantum state space of n qubits such that if any t of the qubits undergo arbitrary decoherence, not necessarily independently, the resulting n qubits can
Domain names  Implementation and Specification
 RFC883, USC/Information Sciences Institute
, 1983
"... This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official pr ..."
Abstract

Cited by 715 (9 self)
 Add to MetaCart
This RFC describes the details of the domain system and protocol, and assumes that the reader is familiar with the concepts discussed in a companion RFC, "Domain Names Concepts and Facilities " [RFC1034]. The domain system is a mixture of functions and data types which are an official
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the loglikelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration
Algorithms for Quantum Computation: Discrete Logarithms and Factoring
, 1994
"... A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken into consi ..."
Abstract

Cited by 1103 (7 self)
 Add to MetaCart
A computer is generally considered to be a universal computational device; i.e., it is believed able to simulate any physical computational device with a increase in computation time of at most a polynomial factor. It is not clear whether this is still true when quantum mechanics is taken
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
published methods, both visually and in terms of mean squared error.
Results 1  10
of
301,963