Results 1  10
of
526,730
MultiRelational Matrix Factorization using Bayesian Personalized Ranking for Social Network Data
"... A key element of the social networks on the internet such as Facebook and Flickr is that they encourage users to create connections between themselves, other users and objects. One important task that has been approached in the literature that deals with such data is to use social graphs to predict ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
formalization of the problem and a principled approach to it based on multirelational factorization techniques. Furthermore, we derive a principled feature extraction scheme from the social data to extract predictors for a classifier on the target relation. Experiments conducted on real world datasets show
Bayesian Interpolation
 Neural Computation
, 1991
"... Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data. T ..."
Abstract

Cited by 721 (17 self)
 Add to MetaCart
Although Bayesian analysis has been in use since Laplace, the Bayesian method of modelcomparison has only recently been developed in depth. In this paper, the Bayesian approach to regularisation and modelcomparison is demonstrated by studying the inference problem of interpolating noisy data
A Practical Bayesian Framework for Backprop Networks
 Neural Computation
, 1991
"... A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures ..."
Abstract

Cited by 496 (20 self)
 Add to MetaCart
A quantitative and practical Bayesian framework is described for learning of mappings in feedforward networks. The framework makes possible: (1) objective comparisons between solutions using alternative network architectures
Centrality in social networks conceptual clarification
 Social Networks
, 1978
"... The intuitive background for measures of structural centrality in social networks is reviewed aPzd existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures are refi ..."
Abstract

Cited by 1035 (2 self)
 Add to MetaCart
The intuitive background for measures of structural centrality in social networks is reviewed aPzd existing measures are evaluated in terms of their consistency with intuitions and their interpretability. Three distinct intuitive conceptions of centrality are uncovered and existing measures
Mining the Network Value of Customers
 In Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining
, 2002
"... One of the major applications of data mining is in helping companies determine which potential customers to market to. If the expected pro t from a customer is greater than the cost of marketing to her, the marketing action for that customer is executed. So far, work in this area has considered only ..."
Abstract

Cited by 562 (11 self)
 Add to MetaCart
as a set of independent entities, we view it as a social network and model it as a Markov random eld. We show the advantages of this approach using a social network mined from a collaborative ltering database. Marketing that exploits the network value of customersalso known as viral marketing
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 1766 (74 self)
 Add to MetaCart
is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five
The spread of obesity in a large social network over 32 years
 NEW ENGLAND JOURNAL OF MEDICINE
, 2007
"... The prevalence of obesity has increased substantially over the past 30 years. We performed a quantitative analysis of the nature and extent of the persontoperson spread of obesity as a possible factor contributing to the obesity epidemic. Methods We evaluated a densely interconnected social networ ..."
Abstract

Cited by 476 (23 self)
 Add to MetaCart
The prevalence of obesity has increased substantially over the past 30 years. We performed a quantitative analysis of the nature and extent of the persontoperson spread of obesity as a possible factor contributing to the obesity epidemic. Methods We evaluated a densely interconnected social
Factor Graphs and the SumProduct Algorithm
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 1998
"... A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple c ..."
Abstract

Cited by 1787 (72 self)
 Add to MetaCart
A factor graph is a bipartite graph that expresses how a "global" function of many variables factors into a product of "local" functions. Factor graphs subsume many other graphical models including Bayesian networks, Markov random fields, and Tanner graphs. Following one simple
Results 1  10
of
526,730