Results 1  10
of
126,783
MultiManifold SemiSupervised Learning
"... We study semisupervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multimanifold setting. We then propose a semisupervised learning algorithm that separates different manifolds ..."
Abstract

Cited by 143 (8 self)
 Add to MetaCart
We study semisupervised learning when the data consists of multiple intersecting manifolds. We give a finite sample analysis to quantify the potential gain of using unlabeled data in this multimanifold setting. We then propose a semisupervised learning algorithm that separates different
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Geodesic based semisupervised multimanifold feature extraction
"... Abstract—Manifold learning is an important feature extraction approach in data mining. This paper presents a new semisupervised manifold learning algorithm, called MultiManifold Discriminative Analysis (MultiMDA). The proposed method is designed to explore the discriminative information hidden i ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract—Manifold learning is an important feature extraction approach in data mining. This paper presents a new semisupervised manifold learning algorithm, called MultiManifold Discriminative Analysis (MultiMDA). The proposed method is designed to explore the discriminative information hidden
SemiSupervised Learning Using Gaussian Fields and Harmonic Functions
 IN ICML
, 2003
"... An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning ..."
Abstract

Cited by 741 (15 self)
 Add to MetaCart
An approach to semisupervised learning is proposed that is based on a Gaussian random field model. Labeled and unlabeled data are represented as vertices in a weighted graph, with edge weights encoding the similarity between instances. The learning
1 Topics in Multimanifold Modeling
"... Course description and objectives We will cover some emerging techniques (most of them are fairly recent) for modeling data as a mixture of ``manifolds’ ’ and for extracting lowdimensional structures from highdimensional data. We will also discuss related algorithms, theory and applications. The c ..."
Abstract
 Add to MetaCart
Course description and objectives We will cover some emerging techniques (most of them are fairly recent) for modeling data as a mixture of ``manifolds’ ’ and for extracting lowdimensional structures from highdimensional data. We will also discuss related algorithms, theory and applications
SemiSupervised Learning with Trees
 In Advances in Neural Information Processing Systems
, 2003
"... We describe a nonparametric Bayesian approach to generalizing from few labeled examples, guided by a larger set of unlabeled objects and the assumption of a latent treestructure to the domain. The tree (or a distribution over trees) may be inferred using the unlabeled data. A prior over concepts ..."
Abstract

Cited by 27 (8 self)
 Add to MetaCart
We describe a nonparametric Bayesian approach to generalizing from few labeled examples, guided by a larger set of unlabeled objects and the assumption of a latent treestructure to the domain. The tree (or a distribution over trees) may be inferred using the unlabeled data. A prior over concepts generated by a mutation process on the inferred tree(s) allows efficient computation of the optimal Bayesian classification function from the labeled examples.
Learning with local and global consistency
 Advances in Neural Information Processing Systems 16
, 2004
"... We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic stru ..."
Abstract

Cited by 666 (21 self)
 Add to MetaCart
We consider the general problem of learning from labeled and unlabeled data, which is often called semisupervised learning or transductive inference. A principled approach to semisupervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic
SemiSupervised Classification by Low Density Separation
, 2005
"... We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing the Transd ..."
Abstract

Cited by 175 (9 self)
 Add to MetaCart
We believe that the cluster assumption is key to successful semisupervised learning. Based on this, we propose three semisupervised algorithms: 1. deriving graphbased distances that emphazise low density regions between clusters, followed by training a standard SVM; 2. optimizing
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 560 (15 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
A framework for learning predictive structures from multiple tasks and unlabeled data
 Journal of Machine Learning Research
, 2005
"... One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semisupervised learning. Although a number of such methods ar ..."
Abstract

Cited by 440 (3 self)
 Add to MetaCart
One of the most important issues in machine learning is whether one can improve the performance of a supervised learning algorithm by including unlabeled data. Methods that use both labeled and unlabeled data are generally referred to as semisupervised learning. Although a number of such methods
Results 1  10
of
126,783