Results 1  10
of
147,754
Mosaicing on adaptive manifolds
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2000
"... AbstractÐImage mosaicing is commonly used to increase the visual field of viewby pasting together many images or video frames. Existing mosaicing methods are based on projecting all images onto a predetermined single manifold: A plane is commonly used for a camera translating sideways, a cylinder is ..."
Abstract

Cited by 82 (9 self)
 Add to MetaCart
mosaicing. A new methodology to allow image mosaicing in more general cases of camera motion is presented. Mosaicing is performed by projecting thin strips from the images onto manifolds which are adapted to the camera motion. While the limitations of existing mosaicing techniques are a result of using
Ricci Flow with Surgery on ThreeManifolds
"... This is a technical paper, which is a continuation of [I]. Here we verify most of the assertions, made in [I, §13]; the exceptions are (1) the statement that a 3manifold which collapses with local lower bound for sectional curvature is a graph manifold this is deferred to a separate paper, as the ..."
Abstract

Cited by 454 (2 self)
 Add to MetaCart
This is a technical paper, which is a continuation of [I]. Here we verify most of the assertions, made in [I, §13]; the exceptions are (1) the statement that a 3manifold which collapses with local lower bound for sectional curvature is a graph manifold this is deferred to a separate paper
Discrete DifferentialGeometry Operators for Triangulated 2Manifolds
, 2002
"... This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Vorono ..."
Abstract

Cited by 453 (17 self)
 Add to MetaCart
This paper provides a unified and consistent set of flexible tools to approximate important geometric attributes, including normal vectors and curvatures on arbitrary triangle meshes. We present a consistent derivation of these first and second order differential properties using averaging Voronoi cells and the mixed FiniteElement/FiniteVolume method, and compare them to existing formulations. Building upon previous work in discrete geometry, these new operators are closely related to the continuous case, guaranteeing an appropriate extension from the continuous to the discrete setting: they respect most intrinsic properties of the continuous differential operators.
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
manifold, beamforming is made robust with respect to array deformations, distortion of the wave front, pointing errors, etc ... so that neither array calibration nor physical modeling are necessary. Rather surprisingly, `blind beamformers' may outperform `informed beamformers' in a plausible
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 541 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads
The TSIMMIS Project: Integration of Heterogeneous Information Sources
"... The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects, ..."
Abstract

Cited by 534 (19 self)
 Add to MetaCart
The goal of the Tsimmis Project is to develop tools that facilitate the rapid integration of heterogeneous information sources that may include both structured and unstructured data. This paper gives an overview of the project, describing components that extract properties from unstructured objects, that translate information into a common object model, that combine information from several sources, that allow browsing of information, and that manage constraints across heterogeneous sites. Tsimmis is a joint project between Stanford and the IBM Almaden Research Center.
The selfduality equations on a Riemann surface
 Proc. Lond. Math. Soc., III. Ser
, 1987
"... In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instanton ..."
Abstract

Cited by 524 (6 self)
 Add to MetaCart
In this paper we shall study a special class of solutions of the selfdual YangMills equations. The original selfduality equations which arose in mathematical physics were defined on Euclidean 4space. The physically relevant solutions were the ones with finite action—the socalled 'instantons'. The same equations may be
Planning Algorithms
, 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract

Cited by 1108 (51 self)
 Add to MetaCart
This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning under uncertainty, sensorbased planning, visibility, decisiontheoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.
Results 1  10
of
147,754