Results 1  10
of
528,249
Program Generation for the AllPairs Shortest Path Problem
, 2006
"... A recent trend in computing are domainspecific program generators, designed to alleviate the effort of porting and reoptimizing libraries for fastchanging and increasingly complex computing platforms. Examples include ATLAS, SPIRAL, and the codelet generator in FFTW. Each of these generators prod ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
produces highly optimized source code directly from a problem specification. In this paper, we extend this list by a program generator for the wellknown FloydWarshall (FW) algorithm that solves the allpairs shortest path problem, which is important in a wide range of engineering applications
Finding the k Shortest Paths
, 1997
"... We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest pat ..."
Abstract

Cited by 401 (2 self)
 Add to MetaCart
We give algorithms for finding the k shortest paths (not required to be simple) connecting a pair of vertices in a digraph. Our algorithms output an implicit representation of these paths in a digraph with n vertices and m edges, in time O(m + n log n + k). We can also find the k shortest
Finding the Hidden Path: Time Bounds for AllPairs Shortest Paths
, 1993
"... We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra&ap ..."
Abstract

Cited by 76 (0 self)
 Add to MetaCart
We investigate the allpairs shortest paths problem in weighted graphs. We present an algorithmthe Hidden Paths Algorithmthat finds these paths in time O(m* n+n² log n), where m is the number of edges participating in shortest paths. Our algorithm is a practical substitute for Dijkstra
AllPairs SmallStretch Paths
 Journal of Algorithms
, 1997
"... Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see that f ..."
Abstract

Cited by 39 (7 self)
 Add to MetaCart
Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to see
A HighThroughput Path Metric for MultiHop Wireless Routing
, 2003
"... This paper presents the expected transmission count metric (ETX), which finds highthroughput paths on multihop wireless networks. ETX minimizes the expected total number of packet transmissions (including retransmissions) required to successfully deliver a packet to the ultimate destination. The E ..."
Abstract

Cited by 1078 (5 self)
 Add to MetaCart
. The ETX metric incorporates the effects of link loss ratios, asymmetry in the loss ratios between the two directions of each link, and interference among the successive links of a path. In contrast, the minimum hopcount metric chooses arbitrarily among the different paths of the same minimum length
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
edges correspond to feasible paths between these configurations. These paths are computed using a simple and fast local planner. In the query phase, any given start and goal configurations of the robot are connected to two nodes of the roadmap; the roadmap is then searched for a path joining these two
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
problem, in which all shortestpath computations are performed on networks with all weights nonnegative. In particular, this
AllPairs SmallStretch Paths
"... Abstract Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy to se ..."
Abstract
 Add to MetaCart
Abstract Let G = (V; E) be a weighted undirected graph. A path between u; v 2 V is said to be of stretch t if its length is at most t times the distance between u and v in the graph. We consider the problem of finding smallstretch paths between all pairs of vertices in the graph G. It is easy
Results 1  10
of
528,249