Results 1  10
of
94,437
MonteCarlo Sampling for NPHard Maximization Problems in the Framework of Weighted Parsing
 Natural Language Processing  NLP 2000, number 1835 in Lecture Notes in Artificial Intelligence
, 2000
"... The purpose of this paper is (1) to provide a theoretical justification for the use of MonteCarlo sampling for approximate resolution of NPhard maximization problems in the framework of weighted parsing, and (2) to show how such sampling techniques can be e#ciently implemented with an explicit ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The purpose of this paper is (1) to provide a theoretical justification for the use of MonteCarlo sampling for approximate resolution of NPhard maximization problems in the framework of weighted parsing, and (2) to show how such sampling techniques can be e#ciently implemented
MonteCarlo sampling for NPhard maximization problems in the framework of weighted parsing
 Natural Language Processing  NLP 2000, number 1835 in Lecture Notes in Artificial Intelligence
, 2000
"... Abstract. The purpose of this paper is (1) to provide a theoretical justification for the use of MonteCarlo sampling for approximate resolution of NPhard maximization problems in the framework of weighted parsing, and (2) to show how such sampling techniques can be efficiently implemented with an ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. The purpose of this paper is (1) to provide a theoretical justification for the use of MonteCarlo sampling for approximate resolution of NPhard maximization problems in the framework of weighted parsing, and (2) to show how such sampling techniques can be efficiently implemented
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Incorporating nonlocal information into information extraction systems by gibbs sampling
 In ACL
, 2005
"... Most current statistical natural language processing models use only local features so as to permit dynamic programming in inference, but this makes them unable to fully account for the long distance structure that is prevalent in language use. We show how to solve this dilemma with Gibbs sampling, ..."
Abstract

Cited by 696 (25 self)
 Add to MetaCart
, a simple Monte Carlo method used to perform approximate inference in factored probabilistic models. By using simulated annealing in place of Viterbi decoding in sequence models such as HMMs, CMMs, and CRFs, it is possible to incorporate nonlocal structure while preserving tractable inference. We
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Lag length selection and the construction of unit root tests with good size and power
 Econometrica
, 2001
"... It is widely known that when there are errors with a movingaverage root close to −1, a high order augmented autoregression is necessary for unit root tests to have good size, but that information criteria such as the AIC and the BIC tend to select a truncation lag (k) that is very small. We conside ..."
Abstract

Cited by 534 (14 self)
 Add to MetaCart
framework in which the movingaverage root is local to −1 to document how the MIC performs better in selecting appropriate values of k. In montecarlo experiments, the MIC is found to yield huge size improvements to the DF GLS and the feasible point optimal PT test developed in Elliott, Rothenberg and Stock
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all possible 5pixel products in 16x16 images. We give the derivation of the method, along with a discussion of other techniques which can be made nonlinear with the kernel approach; and present first experimental results on nonlinear feature extraction for pattern recognition.
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
all be understood in terms of exact or approximate forms of these variational representations. The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in largescale statistical models.
Results 1  10
of
94,437