• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Advanced Search Include Citations

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 11 - 20 of 422,116
Next 10 →

Excitatory and inhibitory interactions in localized populations of model

by Hugh R. Wilson, Jack D. Cowan - Biophysics , 1972
"... ABSMAcr Coupled nonlinear differential equations are derived for the dynamics of spatially localized populations containing both excitatory and inhibitory model neurons. Phase plane methods and numerical solutions are then used to investigate population responses to various types of stimuli. The res ..."
Abstract - Cited by 491 (11 self) - Add to MetaCart
ABSMAcr Coupled nonlinear differential equations are derived for the dynamics of spatially localized populations containing both excitatory and inhibitory model neurons. Phase plane methods and numerical solutions are then used to investigate population responses to various types of stimuli

SIS: A System for Sequential Circuit Synthesis

by Ellen M. Sentovich, Kanwar Jit Singh, Luciano Lavagno, Cho Moon, Rajeev Murgai, Alexander Saldanha, Hamid Savoj, Paul R. Stephan, Robert K. Brayton, Alberto Sangiovanni-Vincentelli , 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logic-level description of a sequential circuit, it produces an optimized net-list in the target technology while preserving the sequential input-output b ..."
Abstract - Cited by 514 (41 self) - Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logic-level description of a sequential circuit, it produces an optimized net-list in the target technology while preserving the sequential input-output behavior. Many different programs and algorithms have been integrated into SIS, allowing the user to choose among a variety of techniques at each stage of the process. It is built on top of MISII [5] and includes all (combinational) optimization techniques therein as well as many enhancements. SIS serves as both a framework within which various algorithms can be tested and compared, and as a tool for automatic synthesis and optimization of sequential circuits. This paper provides an overview of SIS. The first part contains descriptions of the input specification, STG (state transition graph) manipulation, new logic optimization and verification algorithms, ASTG (asynchronous signal transition graph) manipulation, and synthesis for PGA’s (programmable gate arrays). The second part contains a tutorial example illustrating the design process using SIS.

Constrained model predictive control: Stability and optimality

by D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert - AUTOMATICA , 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract - Cited by 696 (15 self) - Add to MetaCart
important because efficiency demands operating points on or close to the boundary of the set of admissible states and controls. In this review, we focus on model predictive control of constrained systems, both linear and nonlinear and discuss only briefly model predictive control of unconstrained nonlinear

A Simple Estimator of Cointegrating Vectors in Higher Order Cointegrated Systems

by James H. Stock, Mark W. Watson - ECONOMETRICA , 1993
"... Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions. T ..."
Abstract - Cited by 507 (3 self) - Add to MetaCart
Efficient estimators of cointegrating vectors are presented for systems involving deterministic components and variables of differing, higher orders of integration. The estimators are computed using GLS or OLS, and Wald Statistics constructed from these estimators have asymptotic x2 distributions

A Lattice Model of Secure Information Flow

by Dorothy E. Denning , 1976
"... This paper investigates mechanisms that guarantee secure information flow in a computer system. These mechanisms are examined within a mathematical framework suitable for formulating the requirements of secure information flow among security classes. The central component of the model is a lattice s ..."
Abstract - Cited by 697 (2 self) - Add to MetaCart
This paper investigates mechanisms that guarantee secure information flow in a computer system. These mechanisms are examined within a mathematical framework suitable for formulating the requirements of secure information flow among security classes. The central component of the model is a lattice

Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes

by Jean-paul Ryckaert, Giovanni Ciccotti, Herman J. C. Berendsen - J. Comput. Phys , 1977
"... A numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated. The relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration. The method ..."
Abstract - Cited by 682 (6 self) - Add to MetaCart
model, (b) the derivation of the equations of motion of the system and (c) the choice of an efficient algorithm for the numerical integration of these equations. In polyatomic molecules, the fast internal vibrations are usually decoupled from

Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions

by Gediminas Adomavicius, Alexander Tuzhilin - IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING , 2005
"... This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes vario ..."
Abstract - Cited by 1420 (21 self) - Add to MetaCart
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following three main categories: content-based, collaborative, and hybrid recommendation approaches. This paper also describes

Planning Algorithms

by Steven M LaValle , 2004
"... This book presents a unified treatment of many different kinds of planning algorithms. The subject lies at the crossroads between robotics, control theory, artificial intelligence, algorithms, and computer graphics. The particular subjects covered include motion planning, discrete planning, planning ..."
Abstract - Cited by 1108 (51 self) - Add to MetaCart
, planning under uncertainty, sensor-based planning, visibility, decision-theoretic planning, game theory, information spaces, reinforcement learning, nonlinear systems, trajectory planning, nonholonomic planning, and kinodynamic planning.

Cointegration and Tests of Present Value Models

by John Y. Campbell, Robert J. Shiller , 1986
"... ..."
Abstract - Cited by 525 (9 self) - Add to MetaCart
Abstract not found

An introduction to variational methods for graphical models

by Michael I. Jordan, Zoubin Ghahramani , et al. - TO APPEAR: M. I. JORDAN, (ED.), LEARNING IN GRAPHICAL MODELS
"... ..."
Abstract - Cited by 1112 (70 self) - Add to MetaCart
Abstract not found
Next 10 →
Results 11 - 20 of 422,116
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University