Results 1  10
of
1,525
Safety for bisimulation in monadic secondorder logic
 Dept. of Philosophy, Utrecht University
, 1996
"... We characterize those formulas of MSO (monadic secondorder logic) that are safe for bisimulation: formulas de ning binary relations such that any bisimulation is also a bisimulation with respect to these de ned relations. Every such formula is equivalent to one constructed fromcalculus tests, atom ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We characterize those formulas of MSO (monadic secondorder logic) that are safe for bisimulation: formulas de ning binary relations such that any bisimulation is also a bisimulation with respect to these de ned relations. Every such formula is equivalent to one constructed fromcalculus tests
Coalgebras and Monads in the Semantics of Java
 Theoretical Computer Science
, 2002
"... This paper describes the basic structures in the denotational and axiomatic semantics of sequential Java, both from a monadic and a coalgebraic perspective. This semantics is an abstraction of the one used for the verification of (sequential) Java programs using proof tools in the LOOP project at th ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
at the University of Nijmegen. It is shown how the monadic perspective gives rise to the relevant computational structure in Java (composition, extension and repetition), and how the coalgebraic perspective o#ers an associated program logic (with invariants, bisimulations, and Hoare logics) for reasoning about
Abstract Coalgebras and Monads in the Semantics of Java ⋆
"... This paper describes the basic structures in the denotational and axiomatic semantics of sequential Java, both from a monadic and a coalgebraic perspective. This semantics is an abstraction of the one used for the verification of (sequential) Java programs using proof tools in the LOOP project at th ..."
Abstract
 Add to MetaCart
at the University of Nijmegen. It is shown how the monadic perspective gives rise to the relevant computational structure in Java (composition, extension and repetition), and how the coalgebraic perspective offers an associated program logic (with invariants, bisimulations, and Hoare logics) for reasoning about
Coalgebraic Logic
 Annals of Pure and Applied Logic
, 1999
"... We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula. The ..."
Abstract

Cited by 108 (0 self)
 Add to MetaCart
We present a generalization of modal logic to logical systems which are interpreted on coalgebras of functors on sets. The leading idea is that infinitary modal logic contains characterizing formulas. That is, every modelworld pair is characterized up to bisimulation by an infinitary formula
Invariants, Bisimulations and the Correctness of Coalgebraic Refinements
 Techn. Rep. CSIR9704, Comput. Sci. Inst., Univ. of Nijmegen
, 1997
"... . Coalgebraic specifications are used to formally describe the behaviour of classes in objectoriented languages. In this paper, a general notion of refinement between two such coalgebraic specifications is defined, capturing the idea that one "concrete" class specification realises the be ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
transitions) between the concrete and the abstract class. The latter can only be used if the abstract class is what we call totally specified. Parts of the underlying theory of invariants and bisimulations in a coalgebraic setting are included, involving least and greatest invariants and connections between
A Tutorial on (Co)Algebras and (Co)Induction
 EATCS Bulletin
, 1997
"... . Algebraic structures which are generated by a collection of constructors like natural numbers (generated by a zero and a successor) or finite lists and trees are of wellestablished importance in computer science. Formally, they are initial algebras. Induction is used both as a definition pr ..."
Abstract

Cited by 269 (36 self)
 Add to MetaCart
principle, and as a proof principle for such structures. But there are also important dual "coalgebraic" structures, which do not come equipped with constructor operations but with what are sometimes called "destructor" operations (also called observers, accessors, transition maps
Calculating invariants as coreflexive bisimulations
, 2008
"... Invariants, bisimulations and assertions are the main ingredients of coalgebra theory applied to computer systems engineering. In this paper we reduce the first to a particular case of the second and show how both together pave the way to a theory of coalgebras which regards invariant predicates as ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
Invariants, bisimulations and assertions are the main ingredients of coalgebra theory applied to computer systems engineering. In this paper we reduce the first to a particular case of the second and show how both together pave the way to a theory of coalgebras which regards invariant predicates
Monadic SecondOrder Logic is closed for product update.
, 2008
"... We consider a monadic secondorder propositional modal language L∃,U. This is a notational variant of monadic secondorder logic, so it is a very expressive extension of the basic modal language L □. Thus it extends strictly the language Lµ of the modal µcalculus. The basic modal language is known ..."
Abstract
 Add to MetaCart
We consider a monadic secondorder propositional modal language L∃,U. This is a notational variant of monadic secondorder logic, so it is a very expressive extension of the basic modal language L □. Thus it extends strictly the language Lµ of the modal µcalculus. The basic modal language is known
Results 1  10
of
1,525