• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 14,859
Next 10 →

Eigentrigraphemes for under-resourced languages

by Tom Ko , Brian Mak - Speech Communication , 2014
"... Abstract Grapheme-based modeling has an advantage over phone-based modeling in automatic speech recognition for under-resourced languages when a good dictionary is not available. Recently we proposed a new method for parameter estimation of context-dependent hidden Markov model (HMM) called eigentr ..."
Abstract - Cited by 3 (0 self) - Add to MetaCart
Abstract Grapheme-based modeling has an advantage over phone-based modeling in automatic speech recognition for under-resourced languages when a good dictionary is not available. Recently we proposed a new method for parameter estimation of context-dependent hidden Markov model (HMM) called

A maximum likelihood approach to continuous speech recognition

by Lalit R. Bahl, Frederick Jelinek, Robert, L. Mercer - IEEE Trans. Pattern Anal. Machine Intell , 1983
"... Abstract-Speech recognition is formulated as a problem of maximum likelihood decoding. This formulation requires statistical models of the speech production process. In this paper, we describe a number of sta-tistical models for use in speech recognition. We give special attention to determining the ..."
Abstract - Cited by 477 (9 self) - Add to MetaCart
Abstract-Speech recognition is formulated as a problem of maximum likelihood decoding. This formulation requires statistical models of the speech production process. In this paper, we describe a number of sta-tistical models for use in speech recognition. We give special attention to determining

SRILM -- An extensible language modeling toolkit

by Andreas Stolcke - IN PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING (ICSLP 2002 , 2002
"... SRILM is a collection of C++ libraries, executable programs, and helper scripts designed to allow both production of and experimentation with statistical language models for speech recognition and other applications. SRILM is freely available for noncommercial purposes. The toolkit supports creation ..."
Abstract - Cited by 1218 (21 self) - Add to MetaCart
SRILM is a collection of C++ libraries, executable programs, and helper scripts designed to allow both production of and experimentation with statistical language models for speech recognition and other applications. SRILM is freely available for noncommercial purposes. The toolkit supports

A tutorial on hidden Markov models and selected applications in speech recognition

by Lawrence R. Rabiner - PROCEEDINGS OF THE IEEE , 1989
"... Although initially introduced and studied in the late 1960s and early 1970s, statistical methods of Markov source or hidden Markov modeling have become increasingly popular in the last several years. There are two strong reasons why this has occurred. First the models are very rich in mathematical s ..."
Abstract - Cited by 5892 (1 self) - Add to MetaCart
of statistical modeling and show how they have been applied to selected problems in machine recognition of speech.

Self-organized language modeling for speech recognition

by F. Jelinek, B. Merialdo, S. Roukos, M. Strauss I - Readings in Speech Recognition , 1990
"... In the case of a trlgr~m language model, the proba-bility of the next word conditioned on the previous two words is estimated from a large corpus of text. The re-sulting static trigram language model (STLM) has fixed probabilities that are independent of the document being dictated. To improve the l ..."
Abstract - Cited by 394 (6 self) - Add to MetaCart
In the case of a trlgr~m language model, the proba-bility of the next word conditioned on the previous two words is estimated from a large corpus of text. The re-sulting static trigram language model (STLM) has fixed probabilities that are independent of the document being dictated. To improve

Maximum Likelihood Linear Transformations for HMM-Based Speech Recognition

by M.J.F. Gales - COMPUTER SPEECH AND LANGUAGE , 1998
"... This paper examines the application of linear transformations for speaker and environmental adaptation in an HMM-based speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Other than in the form of a simple bias ..."
Abstract - Cited by 570 (68 self) - Add to MetaCart
-space transforms on a large vocabulary speech recognition task using incremental adaptation is investigated. In addition, initial experiments using the constrained model-space transform for speaker adaptive training are detailed.

Coupled hidden Markov models for complex action recognition

by Matthew Brand, Nuria Oliver, Alex Pentland , 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying two-handed actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract - Cited by 501 (22 self) - Add to MetaCart
and an extremely limited state memory. The single-process model is often inappropriate for vision (and speech) applications, resulting in low ceilings on model performance. Coupled HMMs provide an efficient way to resolve many of these problems, and offer superior training speeds, model likelihoods, and robustness

Estimation of probabilities from sparse data for the language model component of a speech recognizer

by Slava M. Katz - IEEE Transactions on Acoustics, Speech and Signal Processing , 1987
"... Abstract-The description of a novel type of rn-gram language model is given. The model offers, via a nonlinear recursive procedure, a com-putation and space efficient solution to the problem of estimating prob-abilities from sparse data. This solution compares favorably to other proposed methods. Wh ..."
Abstract - Cited by 799 (2 self) - Add to MetaCart
Abstract-The description of a novel type of rn-gram language model is given. The model offers, via a nonlinear recursive procedure, a com-putation and space efficient solution to the problem of estimating prob-abilities from sparse data. This solution compares favorably to other proposed methods

Real-time american sign language recognition using desk and wearable computer based video

by Thad Starner, Joshua Weaver, Alex Pentland - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1998
"... We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American Sign Language (ASL) using a single camera to track the user’s unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy. The secon ..."
Abstract - Cited by 627 (26 self) - Add to MetaCart
We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American Sign Language (ASL) using a single camera to track the user’s unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy

Gradient-based learning applied to document recognition

by Yann Lecun, Léon Bottou, Yoshua Bengio, Patrick Haffner - Proceedings of the IEEE , 1998
"... Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradientbased learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify hi ..."
Abstract - Cited by 1533 (84 self) - Add to MetaCart
to deal with the variability of two dimensional (2-D) shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, and language modeling. A new learning paradigm, called graph
Next 10 →
Results 1 - 10 of 14,859
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University