Results 1  10
of
1,834,068
Evaluating the Accuracy of SamplingBased Approaches to the Calculation of Posterior Moments
 IN BAYESIAN STATISTICS
, 1992
"... Data augmentation and Gibbs sampling are two closely related, samplingbased approaches to the calculation of posterior moments. The fact that each produces a sample whose constituents are neither independent nor identically distributed complicates the assessment of convergence and numerical accurac ..."
Abstract

Cited by 583 (14 self)
 Add to MetaCart
accuracy of the approximations to the expected value of functions of interest under the posterior. In this paper methods from spectral analysis are used to evaluate numerical accuracy formally and construct diagnostics for convergence. These methods are illustrated in the normal linear model
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
An intrusiondetection model
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 1987
"... A model of a realtime intrusiondetection expert system capable of detecting breakins, penetrations, and other forms of computer abuse is described. The model is based on the hypothesis that security violations can be detected by monitoring a system's audit records for abnormal patterns of sy ..."
Abstract

Cited by 632 (0 self)
 Add to MetaCart
A model of a realtime intrusiondetection expert system capable of detecting breakins, penetrations, and other forms of computer abuse is described. The model is based on the hypothesis that security violations can be detected by monitoring a system's audit records for abnormal patterns
Unified analysis of discontinuous Galerkin methods for elliptic problems
 SIAM J. Numer. Anal
, 2001
"... Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical treatment ..."
Abstract

Cited by 519 (31 self)
 Add to MetaCart
Abstract. We provide a framework for the analysis of a large class of discontinuous methods for secondorder elliptic problems. It allows for the understanding and comparison of most of the discontinuous Galerkin methods that have been proposed over the past three decades for the numerical
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 800 (26 self)
 Add to MetaCart
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 770 (19 self)
 Add to MetaCart
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work
Results 1  10
of
1,834,068