Results 1  10
of
174,612
A Limited Memory Algorithm for Bound Constrained Optimization
 SIAM Journal on Scientific Computing
, 1994
"... An algorithm for solving large nonlinear optimization problems with simple bounds is described. ..."
Abstract

Cited by 557 (9 self)
 Add to MetaCart
An algorithm for solving large nonlinear optimization problems with simple bounds is described.
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 582 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Constrained model predictive control: Stability and optimality
 AUTOMATICA
, 2000
"... Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence and t ..."
Abstract

Cited by 696 (15 self)
 Add to MetaCart
Model predictive control is a form of control in which the current control action is obtained by solving, at each sampling instant, a finite horizon openloop optimal control problem, using the current state of the plant as the initial state; the optimization yields an optimal control sequence
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
Learning LongTerm Dependencies with Gradient Descent is Difficult
 TO APPEAR IN THE SPECIAL ISSUE ON RECURRENT NETWORKS OF THE IEEE TRANSACTIONS ON NEURAL NETWORKS
"... Recurrent neural networks can be used to map input sequences to output sequences, such as for recognition, production or prediction problems. However, practical difficulties have been reported in training recurrent neural networks to perform tasks in which the temporal contingencies present in th ..."
Abstract

Cited by 374 (35 self)
 Add to MetaCart
in the input/output sequences span long intervals. We showwhy gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases. These results expose a tradeoff between efficient learning by gradient descent and latching on information
Mean shift, mode seeking, and clustering
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... AbstractMean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some kmeans like clustering algorithms its special cases. It is shown that mean shift is a modeseeki ..."
Abstract

Cited by 620 (0 self)
 Add to MetaCart
in clustering and Hough transform are demonstrated. Mean shift is also considered as an evolutionary strategy that performs multistart global optimization. Index TermsMean shift, gradient descent, global optimization, Hough transform, cluster analysis, kmeans clustering. I.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
A PERFORMANCE EVALUATION OF LOCAL DESCRIPTORS
, 2005
"... In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the HarrisAffine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how their perfo ..."
Abstract

Cited by 1752 (53 self)
 Add to MetaCart
In this paper we compare the performance of descriptors computed for local interest regions, as for example extracted by the HarrisAffine detector [32]. Many different descriptors have been proposed in the literature. However, it is unclear which descriptors are more appropriate and how
Results 1  10
of
174,612