Results 1  10
of
205,537
Discovering Frequent Closed Itemsets for Association Rules
, 1999
"... In this paper, we address the problem of finding frequent itemsets in a database. Using the closed itemset lattice framework, we show that this problem can be reduced to the problem of finding frequent closed itemsets. Based on this statement, we can construct efficient data mining algorithms by lim ..."
Abstract

Cited by 417 (13 self)
 Add to MetaCart
In this paper, we address the problem of finding frequent itemsets in a database. Using the closed itemset lattice framework, we show that this problem can be reduced to the problem of finding frequent closed itemsets. Based on this statement, we can construct efficient data mining algorithms
Mining Frequent Patterns without Candidate Generation: A FrequentPattern Tree Approach
 DATA MINING AND KNOWLEDGE DISCOVERY
, 2004
"... Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still co ..."
Abstract

Cited by 1700 (64 self)
 Add to MetaCart
Mining frequent patterns in transaction databases, timeseries databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriorilike candidate set generationandtest approach. However, candidate set generation is still
Efficiently mining long patterns from databases
, 1998
"... We present a patternmining algorithm that scales roughly linearly in the number of maximal patterns embedded in a database irrespective of the length of the longest pattern. In comparison, previous algorithms based on Apriori scale exponentially with longest pattern length. Experiments on real data ..."
Abstract

Cited by 465 (3 self)
 Add to MetaCart
on some datasets. On other datasets where the patterns are not so long, the gains are more modest. In practice, MaxMiner is demonstrated to run in time that is roughly linear in the number of maximal frequent itemsets and the size of the database, irrespective of the size of the longest frequent
CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets
, 2000
"... Association mining may often derive an undesirably large set of frequent itemsets and association rules. Recent studies have proposed an interesting alternative: mining frequent closed itemsets and their corresponding rules, which has the same power as association mining but substantially reduces th ..."
Abstract

Cited by 313 (29 self)
 Add to MetaCart
single prefix path compression technique to identify frequent closed itemsets quickly, and (3) exploring a partitionbased projection mechanism for scalable mining in large databases. Our performance study shows that CLOSET is efficient and scalable over large databases, and is faster than the previously
Dynamic Itemset Counting and Implication Rules for Market Basket Data
, 1997
"... We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We in ..."
Abstract

Cited by 599 (6 self)
 Add to MetaCart
We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We
From data mining to knowledge discovery in databases
 AI Magazine
, 1996
"... ■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery in databases ..."
Abstract

Cited by 510 (0 self)
 Add to MetaCart
■ Data mining and knowledge discovery in databases have been attracting a significant amount of research, industry, and media attention of late. What is all the excitement about? This article provides an overview of this emerging field, clarifying how data mining and knowledge discovery
CHARM: An efficient algorithm for closed itemset mining
, 2002
"... The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders of magnitude smaller than the set of all frequent itemsets. In this paper we present CHARM, an efficient algorithm for mining all frequent closed itemsets. It enumerates closed sets usin ..."
Abstract

Cited by 317 (14 self)
 Add to MetaCart
The set of frequent closed itemsets uniquely determines the exact frequency of all itemsets, yet it can be orders of magnitude smaller than the set of all frequent itemsets. In this paper we present CHARM, an efficient algorithm for mining all frequent closed itemsets. It enumerates closed sets
Efficiently mining maximal frequent itemsets
 In ICDM
, 2001
"... We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets. GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive focusing to perform maximality checking, and diffset propagation to perform fast frequency computa ..."
Abstract

Cited by 162 (11 self)
 Add to MetaCart
We present GenMax, a backtrack search based algorithm for mining maximal frequent itemsets. GenMax uses a number of optimizations to prune the search space. It uses a novel technique called progressive focusing to perform maximality checking, and diffset propagation to perform fast frequency
Mining Sequential Patterns
, 1995
"... We are given a large database of customer transactions, where each transaction consists of customerid, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empiri ..."
Abstract

Cited by 1534 (7 self)
 Add to MetaCart
We are given a large database of customer transactions, where each transaction consists of customerid, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem
Mining Generalized Association Rules
, 1995
"... We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy th ..."
Abstract

Cited by 577 (7 self)
 Add to MetaCart
We introduce the problem of mining generalized association rules. Given a large database of transactions, where each transaction consists of a set of items, and a taxonomy (isa hierarchy) on the items, we find associations between items at any level of the taxonomy. For example, given a taxonomy
Results 1  10
of
205,537