Results 1  10
of
89,322
A Note on MinimumSegment Drawings of Planar Graphs
"... A straightline drawing of a planar graph G is a planar drawing of G, where each vertex is mapped to a point on the Euclidean plane and each edge is drawn as a straight line segment. A segment in a straightline drawing is a maximal set of edges that form a straight line segment. A minimumsegment d ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
A straightline drawing of a planar graph G is a planar drawing of G, where each vertex is mapped to a point on the Euclidean plane and each edge is drawn as a straight line segment. A segment in a straightline drawing is a maximal set of edges that form a straight line segment. A minimumsegment
A Note on MinimumSegment Drawings of Planar Graphs
"... Abstract. A straightline drawing of a planar graph G is a planar drawing of G such that each vertex is mapped to a point on the Euclidean plane, each edge is drawn as a straight line segment, and no two edges intersect except possibly at a common endpoint. A segment in a straightline drawing is a ..."
Abstract
 Add to MetaCart
with maximum degree four has a ksegment drawing, where k 3. The problem remains NPhard when the drawing is constrained to be convex. We also prove that given a partial drawing of a plane graph G, it is NPhard to determine whether there exists a ksegment drawing of G that contains all the segments specied
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Convex drawings of 3connected plane graphs
 Algorithmica
, 2007
"... We use Schnyder woods of 3connected planar graphs to produce convex straight line drawings on a grid of size (n − 2 − ∆) × (n − 2 − ∆). The parameter ∆ ≥ 0 depends on the Schnyder wood used for the drawing. This parameter is in the range 0 ≤ ∆ ≤ n 2 − 2. The algorithm is a refinement of the fac ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
We use Schnyder woods of 3connected planar graphs to produce convex straight line drawings on a grid of size (n − 2 − ∆) × (n − 2 − ∆). The parameter ∆ ≥ 0 depends on the Schnyder wood used for the drawing. This parameter is in the range 0 ≤ ∆ ≤ n 2 − 2. The algorithm is a refinement
Primitives for the manipulation of general subdivisions and the computations of Voronoi diagrams
 ACM Tmns. Graph
, 1985
"... The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms ar ..."
Abstract

Cited by 543 (11 self)
 Add to MetaCart
The following problem is discussed: Given n points in the plane (the sites) and an arbitrary query point 4, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the given sites and then locating the query point in one of its regions. Two algorithms
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose
Results 1  10
of
89,322