Results 1  10
of
334,921
Minimum weight convex Steiner partitions
, 2009
"... New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n / loglog n) times longer than a ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n / loglog n) times longer than
Reviewed by Manoj Changat References
"... Minimum weight convex Steiner partitions. (English summary) ..."
Convex Analysis
, 1970
"... In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a lo ..."
Abstract

Cited by 5350 (67 self)
 Add to MetaCart
In this book we aim to present, in a unified framework, a broad spectrum of mathematical theory that has grown in connection with the study of problems of optimization, equilibrium, control, and stability of linear and nonlinear systems. The title Variational Analysis reflects this breadth. For a long time, ‘variational ’ problems have been identified mostly with the ‘calculus of variations’. In that venerable subject, built around the minimization of integral functionals, constraints were relatively simple and much of the focus was on infinitedimensional function spaces. A major theme was the exploration of variations around a point, within the bounds imposed by the constraints, in order to help characterize solutions and portray them in terms of ‘variational principles’. Notions of perturbation, approximation and even generalized differentiability were extensively investigated. Variational theory progressed also to the study of socalled stationary points, critical points, and other indications of singularity that a point might have relative to its neighbors, especially in association with existence theorems for differential equations.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Just Relax: Convex Programming Methods for Identifying Sparse Signals in Noise
, 2006
"... This paper studies a difficult and fundamental problem that arises throughout electrical engineering, applied mathematics, and statistics. Suppose that one forms a short linear combination of elementary signals drawn from a large, fixed collection. Given an observation of the linear combination that ..."
Abstract

Cited by 496 (2 self)
 Add to MetaCart
. This paper studies a method called convex relaxation, which attempts to recover the ideal sparse signal by solving a convex program. This approach is powerful because the optimization can be completed in polynomial time with standard scientific software. The paper provides general conditions which ensure
A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts
 In Proceedings of the ACL
, 2004
"... Sentiment analysis seeks to identify the viewpoint(s) underlying a text span; an example application is classifying a movie review as “thumbs up” or “thumbs down”. To determine this sentiment polarity, we propose a novel machinelearning method that applies textcategorization techniques to just the ..."
Abstract

Cited by 589 (7 self)
 Add to MetaCart
the subjective portions of the document. Extracting these portions can be implemented using efficient techniques for finding minimum cuts in graphs; this greatly facilitates incorporation of crosssentence contextual constraints. Publication info: Proceedings of the ACL, 2004. 1
Global Optimization with Polynomials and the Problem of Moments
 SIAM Journal on Optimization
, 2001
"... We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear mat ..."
Abstract

Cited by 569 (47 self)
 Add to MetaCart
We consider the problem of finding the unconstrained global minimum of a realvalued polynomial p(x) : R R, as well as the global minimum of p(x), in a compact set K defined by polynomial inequalities. It is shown that this problem reduces to solving an (often finite) sequence of convex linear
Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA Package)
"... Computer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions and bas ..."
Abstract

Cited by 812 (119 self)
 Add to MetaCart
Computer codes for computation and comparison of RNA secondary structures, the Vienna RNA package, are presented, that are based on dynamic programming algorithms and aim at predictions of structures with minimum free energies as well as at computations of the equilibrium partition functions
A scheduling model for reduced CPU energy
 ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE
, 1995
"... The energy usage of computer systems is becoming an important consideration, especially for batteryoperated systems. Various methods for reducing energy consumption have been investigated, both at the circuit level and at the operating systems level. In this paper, we propose a simple model of job s ..."
Abstract

Cited by 550 (3 self)
 Add to MetaCart
scheduling aimed at capturing some key aspects of energy minimization. In this model, each job is to be executed between its arrival time and deadline by a single processor with variable speed, under the assumption that energy usage per unit time, P, is a convex function of the processor speed s. We give
Results 1  10
of
334,921