Results 1  10
of
5,093,659
Minimal Completely Separating Systems of Sets The
"... Let [n] denote an nset. A subset,) of [n] i from j if i and j t/:. 5'. A collection of ksets n called (n, k) completely if, for each ordered pair j) E [n] x [71,] with i n which i from j. Let denote the size of a smallest (71 " k) completely Amongst other things, it will be shown that R ..."
Abstract
 Add to MetaCart
Let [n] denote an nset. A subset,) of [n] i from j if i and j t/:. 5'. A collection of ksets n called (n, k) completely if, for each ordered pair j) E [n] x [71,] with i n which i from j. Let denote the size of a smallest (71 " k) completely Amongst other things, it will be shown that R
N Degrees of Separation: MultiDimensional Separation of Concerns
 IN PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 1999
"... Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a ..."
Abstract

Cited by 514 (8 self)
 Add to MetaCart
Done well, separation of concerns can provide many software engineering benefits, including reduced complexity, improved reusability, and simpler evolution. The choice of boundaries for separate concerns depends on both requirements on the system and on the kind(s) of decompositionand composition a
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption
Separation of ownership and control
 JOURNAL OF LAW AND ECONOMICS
, 1983
"... This paper analyzes the survival of organizations in which decision agents do not bear a major share of the wealth effects of their decisions. This is what the literature on large corporations calls separation of âownershipâ and âcontrol.â Such separation of decision and risk bearing functio ..."
Abstract

Cited by 1564 (7 self)
 Add to MetaCart
This paper analyzes the survival of organizations in which decision agents do not bear a major share of the wealth effects of their decisions. This is what the literature on large corporations calls separation of âownershipâ and âcontrol.â Such separation of decision and risk bearing
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
The SimpleScalar tool set, version 2.0
 Computer Architecture News
, 1997
"... This report describes release 2.0 of the SimpleScalar tool set, a suite of free, publicly available simulation tools that offer both detailed and highperformance simulation of modern microprocessors. The new release offers more tools and capabilities, precompiled binaries, cleaner interfaces, bette ..."
Abstract

Cited by 1827 (44 self)
 Add to MetaCart
, better documentation, easier installation, improved portability, and higher performance. This report contains a complete description of the tool set, including retrieval and installation instructions, a description of how to use the tools, a description of the target SimpleScalar architecture, and many
Equivariant Adaptive Source Separation
 IEEE Trans. on Signal Processing
, 1996
"... Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI (Eq ..."
Abstract

Cited by 448 (9 self)
 Add to MetaCart
Source separation consists in recovering a set of independent signals when only mixtures with unknown coefficients are observed. This paper introduces a class of adaptive algorithms for source separation which implements an adaptive version of equivariant estimation and is henceforth called EASI
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
Results 1  10
of
5,093,659