Results 11  20
of
478,154
Linear pattern matching algorithms
 IN PROCEEDINGS OF THE 14TH ANNUAL IEEE SYMPOSIUM ON SWITCHING AND AUTOMATA THEORY. IEEE
, 1972
"... In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear ti ..."
Abstract

Cited by 549 (0 self)
 Add to MetaCart
In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching in linear time. Related problems, such as those discussed in [4], have previously been solved by efficient but suboptimal algorithms. In this paper, we introduce an interesting data structure called a bitree. A linear time algorithm for obtaining a compacted version of a bitree associated with a given string is presented. With this construction as the basic tool, we indicate how to solve several pattern matching problems, including some from [4], in linear time.
Training Support Vector Machines: an Application to Face Detection
, 1997
"... We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision sur ..."
Abstract

Cited by 728 (1 self)
 Add to MetaCart
We investigate the application of Support Vector Machines (SVMs) in computer vision. SVM is a learning technique developed by V. Vapnik and his team (AT&T Bell Labs.) that can be seen as a new method for training polynomial, neural network, or Radial Basis Functions classifiers. The decision surfaces are found by solving a linearly constrained quadratic programming problem. This optimization problem is challenging because the quadratic form is completely dense and the memory requirements grow with the square of the number of data points. We present a decomposition algorithm that guarantees global optimality, and can be used to train SVM's over very large data sets. The main idea behind the decomposition is the iterative solution of subproblems and the evaluation of optimality conditions which are used both to generate improved iterative values, and also establish the stopping criteria for the algorithm. We present experimental results of our implementation of SVM, and demonstrate the ...
On Spectral Clustering: Analysis and an algorithm
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
, 2001
"... Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly ..."
Abstract

Cited by 1697 (13 self)
 Add to MetaCart
Despite many empirical successes of spectral clustering methods  algorithms that cluster points using eigenvectors of matrices derived from the distances between the points  there are several unresolved issues. First, there is a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.
A Critical Point For Random Graphs With A Given Degree Sequence
, 2000
"... Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 the ..."
Abstract

Cited by 511 (8 self)
 Add to MetaCart
Given a sequence of nonnegative real numbers 0 ; 1 ; : : : which sum to 1, we consider random graphs having approximately i n vertices of degree i. Essentially, we show that if P i(i \Gamma 2) i ? 0 then such graphs almost surely have a giant component, while if P i(i \Gamma 2) i ! 0 then almost surely all components in such graphs are small. We can apply these results to G n;p ; G n;M , and other wellknown models of random graphs. There are also applications related to the chromatic number of sparse random graphs.
Sequence Logos: A New Way to Display Consensus Sequences
 Nucleic Acids Res
, 1990
"... INTRODUCTION A logo is "a single piece of type bearing two or more usually separate elements" [1]. In this paper, we use logos to display aligned sets of sequences. Sequence logos concentrate the following information into a single graphic [2]: 1. The general consensus of the sequences. ..."
Abstract

Cited by 638 (27 self)
 Add to MetaCart
INTRODUCTION A logo is "a single piece of type bearing two or more usually separate elements" [1]. In this paper, we use logos to display aligned sets of sequences. Sequence logos concentrate the following information into a single graphic [2]: 1. The general consensus of the sequences. National Cancer Institute, Frederick Cancer Research and Development Center, Laboratory of Mathematical Biology, P. O. Box B, Frederick, MD 21701. Internet addresses: toms@ncifcrf.gov and stephens@ncifcrf.gov. y corresponding author 1 2. The order of predominance of the residues at every position. 3. The relative frequencies of every residue at every position. 4. The amount of information present at every position in the sequence, measured in bits. 5. An initiation point, cut point, or other significant location (if appropriate) . Any aligned set of DNA, RNA or protein sequences can be represented using this technique. CREATION OF BINDING S
PseudoRandom Generation from OneWay Functions
 PROC. 20TH STOC
, 1988
"... Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom gene ..."
Abstract

Cited by 887 (22 self)
 Add to MetaCart
Pseudorandom generators are fundamental to many theoretical and applied aspects of computing. We show howto construct a pseudorandom generator from any oneway function. Since it is easy to construct a oneway function from a pseudorandom generator, this result shows that there is a pseudorandom generator iff there is a oneway function.
Comprehending Monads
 Mathematical Structures in Computer Science
, 1992
"... Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised t ..."
Abstract

Cited by 522 (16 self)
 Add to MetaCart
Category theorists invented monads in the 1960's to concisely express certain aspects of universal algebra. Functional programmers invented list comprehensions in the 1970's to concisely express certain programs involving lists. This paper shows how list comprehensions may be generalised to an arbitrary monad, and how the resulting programming feature can concisely express in a pure functional language some programs that manipulate state, handle exceptions, parse text, or invoke continuations. A new solution to the old problem of destructive array update is also presented. No knowledge of category theory is assumed.
The performance of mutual funds in the period 19451964
 JOURNAL OF FINANCE
, 1968
"... In this paper I derive a riskadjusted measure of portfolio performance (now known as "Jensen's Alpha") that estimates how much a manager's forecasting ability contributes to the fund's returns. The measure is based on the theory of the pricing of capital assets by Sharpe (1 ..."
Abstract

Cited by 584 (1 self)
 Add to MetaCart
In this paper I derive a riskadjusted measure of portfolio performance (now known as "Jensen's Alpha") that estimates how much a manager's forecasting ability contributes to the fund's returns. The measure is based on the theory of the pricing of capital assets by Sharpe (1964), Lintner (1965a) and Treynor (Undated). I apply the measure to estimate the predictive ability of 115 mutual fund managers in the period 19451964—that is their ability to earn returns which are higher than those we would expect given the level of risk of each of the portfolios. The foundations of the model and the properties of the performance measure suggested here are discussed in Section II. The evidence on mutual fund performance indicates not only that these 115 mutual funds were on average not able to predict security prices well enough to outperform a buythemarketandhold policy, but also that there is very little evidence that any individual fund was able to do significantly better than that which we expected from mere random chance. It is also important to note that these conclusions hold even when we measure the fund returns gross of management expenses (that is assume their bookkeeping, research, and other expenses except brokerage commissions were obtained free). Thus on average the funds apparently were not quite successful enough in their trading activities to recoup even their brokerage expenses.
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the user to manually tweak the metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them to provide examples. In this paper, we present an algorithm that, given examples of similar (and, if desired, dissimilar) pairs of points in R , learns a distance metric over R that respects these relationships. Our method is based on posing metric learning as a convex optimization problem, which allows us to give efficient, localoptimafree algorithms. We also demonstrate empirically that the learned metrics can be used to significantly improve clustering performance.
Results 11  20
of
478,154