Results 1  10
of
1,605,883
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
. In contrast, heuristic attempts to sparsely solve such systems – greedy algorithms and thresholding – perform poorly in this challenging setting. The techniques include the use of random proportional embeddings and almostspherical sections in Banach space theory, and deviation bounds for the eigenvalues
A New Method for Solving Hard Satisfiability Problems
 AAAI
, 1992
"... We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional approac ..."
Abstract

Cited by 734 (21 self)
 Add to MetaCart
We introduce a greedy local search procedure called GSAT for solving propositional satisfiability problems. Our experiments show that this procedure can be used to solve hard, randomly generated problems that are an order of magnitude larger than those that can be handled by more traditional
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
 SIAM J. SCI. STAT. COMPUT
, 1986
"... We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered a ..."
Abstract

Cited by 2046 (40 self)
 Add to MetaCart
We present an iterative method for solving linear systems, which has the property ofminimizing at every step the norm of the residual vector over a Krylov subspace. The algorithm is derived from the Arnoldi process for constructing an l2orthogonal basis of Krylov subspaces. It can be considered
The Weakest Failure Detector for Solving Consensus
, 1996
"... We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed, is sufficien ..."
Abstract

Cited by 492 (21 self)
 Add to MetaCart
We determine what information about failures is necessary and sufficient to solve Consensus in asynchronous distributed systems subject to crash failures. In [CT91], it is shown that 3W, a failure detector that provides surprisingly little information about which processes have crashed
Cognitive load during problem solving: effects on learning
 COGNITIVE SCIENCE
, 1988
"... Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested t ..."
Abstract

Cited by 603 (13 self)
 Add to MetaCart
Considerable evidence indicates that domain specific knowledge in the form of schemes is the primary factor distinguishing experts from novices in problemsolving skill. Evidence that conventional problemsolving activity is not effective in schema acquisition is also accumulating. It is suggested
Solving multiclass learning problems via errorcorrecting output codes
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1995
"... Multiclass learning problems involve nding a de nition for an unknown function f(x) whose range is a discrete set containing k>2values (i.e., k \classes"). The de nition is acquired by studying collections of training examples of the form hx i;f(x i)i. Existing approaches to multiclass l ..."
Abstract

Cited by 730 (8 self)
 Add to MetaCart
thatlike the other methodsthe errorcorrecting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that errorcorrecting output codes provide a generalpurpose method for improving the performance of inductive learning programs on multiclass
The RungeKutta discontinuous Galerkin method for conservation laws V: multidimensional systems
, 1997
"... This is the fifth paper in a series in which we construct and study the socalled RungeKutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are describ ..."
Abstract

Cited by 494 (42 self)
 Add to MetaCart
This is the fifth paper in a series in which we construct and study the socalled RungeKutta Discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms
On optimistic methods for concurrency control
 ACM Transactions on Database Systems
, 1981
"... Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a co ..."
Abstract

Cited by 547 (1 self)
 Add to MetaCart
Most current approaches to concurrency control in database systems rely on locking of data objects as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented. The methods used are “optimistic ” in the sense that they rely mainly on transaction backup as a
Results 1  10
of
1,605,883