Results 1  10
of
1,151,792
Maximum Intensity Projection at Warp Speed
, 1999
"... Maximum Intensity Projection (MIP) is a volume rendering technique which is used to extract highintensity structures from volumetric scalar data. At each pixel the highest data value encountered along the corresponding viewing ray is determined. MIP is commonly used to extract vascular structures f ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
Maximum Intensity Projection (MIP) is a volume rendering technique which is used to extract highintensity structures from volumetric scalar data. At each pixel the highest data value encountered along the corresponding viewing ray is determined. MIP is commonly used to extract vascular structures
FAST VOLUME RENDERING USING A SHEARWARP FACTORIZATION OF THE VIEWING TRANSFORMATION
, 1995
"... Volume rendering is a technique for visualizing 3D arrays of sampled data. It has applications in areas such as medical imaging and scientific visualization, but its use has been limited by its high computational expense. Early implementations of volume rendering used bruteforce techniques that req ..."
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
, 2003
"... The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximumlikelihood principle, which clearly satisfies these requirements. The ..."
Abstract

Cited by 2109 (30 self)
 Add to MetaCart
of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximumlikelihood programs and much higher than the performance
A MaximumEntropyInspired Parser
, 1999
"... We present a new parser for parsing down to Penn treebank style parse trees that achieves 90.1% average precision/recall for sentences of length 40 and less, and 89.5% for sentences of length 100 and less when trained and tested on the previously established [5,9,10,15,17] "stan dard" se ..."
Abstract

Cited by 963 (19 self)
 Add to MetaCart
" sections of the Wall Street Journal tree bank. This represents a 13% decrease in error rate over the best singleparser results on this corpus [9]. The major technical innova tion is the use of a "maximumentropyinspired" model for conditioning and smoothing that let us successfully to test
A Maximum Entropy Model for PartOfSpeech Tagging
, 1996
"... This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "features" t ..."
Abstract

Cited by 577 (1 self)
 Add to MetaCart
This paper presents a statistical model which trains from a corpus annotated with PartOfSpeech tags and assigns them to previously unseen text with stateoftheart accuracy(96.6%). The model can be classified as a Maximum Entropy model and simultaneously uses many contextual "
MEGA5: Molecular evolutionary genetics analysis using maximum . . .
, 2011
"... Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version ..."
Abstract

Cited by 6858 (19 self)
 Add to MetaCart
5 (MEGA5), which is a userfriendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML
The Player/Stage Project: Tools for MultiRobot and Distributed Sensor Systems
 In Proceedings of the 11th International Conference on Advanced Robotics
, 2003
"... This paper describes the Player/Stage software tools applied to multirobot, distributedrobot and sensor network systems. Player is a robot device server that provides network transparent robot control. Player seeks to constrain controller design as little as possible; it is device independent, non ..."
Abstract

Cited by 617 (14 self)
 Add to MetaCart
, nonlocking and language and styleneutral. Stage is a lightweight, highly configurable robot simulator that supports large populations. Player/Stage is a community Free Software project. Current usage of Player and Stage is reviewed, and some interesting research opportunities opened up
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
The Digital Michelangelo Project: 3D Scanning of Large Statues
, 2000
"... We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merg ..."
Abstract

Cited by 488 (8 self)
 Add to MetaCart
We describe a hardware and software system for digitizing the shape and color of large fragile objects under nonlaboratory conditions. Our system employs laser triangulation rangefinders, laser timeofflight rangefinders, digital still cameras, and a suite of software for acquiring, aligning, merging, and viewing scanned data. As a demonstration of this system, we digitized 10 statues by Michelangelo, including the wellknown figure of David, two building interiors, and all 1,163 extant fragments of the Forma Urbis Romae, a giant marble map of ancient Rome. Our largest single dataset is of the David  2 billion polygons and 7,000 color images. In this paper, we discuss the challenges we faced in building this system, the solutions we employed, and the lessons we learned. We focus in particular on the unusual design of our laser triangulation scanner and on the algorithms and software we developed for handling very large scanned models. CR Categories: I.2.10 [Artificial Intelligence]...
Coupled hidden Markov models for complex action recognition
, 1996
"... We present algorithms for coupling and training hidden Markov models (HMMs) to model interacting processes, and demonstrate their superiority to conventional HMMs in a vision task classifying twohanded actions. HMMs are perhaps the most successful framework in perceptual computing for modeling and ..."
Abstract

Cited by 497 (22 self)
 Add to MetaCart
and classifying dynamic behaviors, popular because they offer dynamic time warping, a training algorithm, and a clear Bayesian semantics. However, the Markovian framework makes strong restrictive assumptions about the system generating the signalthat it is a single process having a small number of states
Results 1  10
of
1,151,792