Results 1  10
of
241,875
Maximum planar subgraphs in dense graphs
"... Kühn, Osthus and Taraz showed that for each γ> 0 there exists C such that any nvertex graph with minimum degree γn contains a planar subgraph with at least 2n − C edges. We find the optimum value of C for all γ < 1/2 and sufficiently large n. 1 ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Kühn, Osthus and Taraz showed that for each γ> 0 there exists C such that any nvertex graph with minimum degree γn contains a planar subgraph with at least 2n − C edges. We find the optimum value of C for all γ < 1/2 and sufficiently large n. 1
A Separator Theorem for Planar Graphs
, 1977
"... Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which ..."
Abstract

Cited by 465 (1 self)
 Add to MetaCart
Let G be any nvertex planar graph. We prove that the vertices of G can be partitioned into three sets A, B, C such that no edge joins a vertex in A with a vertex in B, neither A nor B contains more than 2n/3 vertices, and C contains no more than 2& & vertices. We exhibit an algorithm which
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
as follows: ffl We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit representation of the drawing, and we show its applications. ffl We present several efficient dynamic drawing algorithms for trees, seriesparallel digraphs, planar stdigraphs, and planar
AN n 5/2 ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS
, 1973
"... The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/. ..."
Abstract

Cited by 712 (1 self)
 Add to MetaCart
The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to (m + n)x/.
Large Planar Subgraphs in Dense Graphs
"... We prove sucient and essentially necessary conditions in terms of the minimum degree for a graph to contain planar subgraphs with many edges. ..."
Abstract

Cited by 14 (11 self)
 Add to MetaCart
We prove sucient and essentially necessary conditions in terms of the minimum degree for a graph to contain planar subgraphs with many edges.
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
A new approach to the maximum flow problem
 JOURNAL OF THE ACM
, 1988
"... All previously known efficient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the pre ..."
Abstract

Cited by 672 (34 self)
 Add to MetaCart
to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n³) time bound on an nvertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 1173 (16 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Results 1  10
of
241,875