Results 1  10
of
16,876
Matching Points with Things
, 2009
"... Representing a matching between pairs of planar objects as a set of noncrossing line segments is a natural problem in computational geometry. It is well known, for instance, that given two sets of n points in the plane, say n red points and n blue points, there always exists such a noncrossing matc ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Representing a matching between pairs of planar objects as a set of noncrossing line segments is a natural problem in computational geometry. It is well known, for instance, that given two sets of n points in the plane, say n red points and n blue points, there always exists such a noncrossing
Iterative point matching for registration of freeform curves and surfaces
, 1994
"... A heuristic method has been developed for registering two sets of 3D curves obtained by using an edgebased stereo system, or two dense 3D maps obtained by using a correlationbased stereo system. Geometric matching in general is a difficult unsolved problem in computer vision. Fortunately, in ma ..."
Abstract

Cited by 660 (8 self)
 Add to MetaCart
, which is required for environment modeling (e.g., building a Digital Elevation Map). Objects are represented by a set of 3D points, which are considered as the samples of a surface. No constraint is imposed on the form of the objects. The proposed algorithm is based on iteratively matching points
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1809 (21 self)
 Add to MetaCart
for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning trans form. We treat recognition in a nearestneighbor classification framework as the problem of finding the stored
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 629 (2 self)
 Add to MetaCart
in 1981. The method defines the measure of match between fixedsize feature windows in the past and current frame as the sum of squared intensity differences over the windows. The displacement is then defined as the one that minimizes this sum. For small motions, a linearization of the image intensities
An affine invariant interest point detector
 In Proceedings of the 7th European Conference on Computer Vision
, 2002
"... Abstract. This paper presents a novel approach for detecting affine invariant interest points. Our method can deal with significant affine transformations including large scale changes. Such transformations introduce significant changes in the point location as well as in the scale and the shape of ..."
Abstract

Cited by 1467 (55 self)
 Add to MetaCart
to affine invariant points. For matching and recognition, the image is characterized by a set of affine invariant points; the affine transformation associated with each point allows the computation of an affine invariant descriptor which is also invariant to affine illumination changes. A quantitative
Using spin images for efficient object recognition in cluttered 3D scenes
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1999
"... We present a 3D shapebased object recognition system for simultaneous recognition of multiple objects in scenes containing clutter and occlusion. Recognition is based on matching surfaces by matching points using the spinimage representation. The spinimage is a data level shape descriptor that i ..."
Abstract

Cited by 582 (9 self)
 Add to MetaCart
We present a 3D shapebased object recognition system for simultaneous recognition of multiple objects in scenes containing clutter and occlusion. Recognition is based on matching surfaces by matching points using the spinimage representation. The spinimage is a data level shape descriptor
Local grayvalue invariants for image retrieval
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows for efficie ..."
Abstract

Cited by 548 (27 self)
 Add to MetaCart
Abstract—This paper addresses the problem of retrieving images from large image databases. The method is based on local grayvalue invariants which are computed at automatically detected interest points. A voting algorithm and semilocal constraints make retrieval possible. Indexing allows
Efficient Variants of the ICP Algorithm
 INTERNATIONAL CONFERENCE ON 3D DIGITAL IMAGING AND MODELING
, 2001
"... The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minim ..."
Abstract

Cited by 718 (5 self)
 Add to MetaCart
The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of threedimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points
Fastmap: A fast algorithm for indexing, datamining and visualization of traditional and multimedia datasets
, 1995
"... A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several ..."
Abstract

Cited by 502 (22 self)
 Add to MetaCart
A very promising idea for fast searching in traditional and multimedia databases is to map objects into points in kd space, using k featureextraction functions, provided by a domain expert [Jag91]. Thus, we can subsequently use highly finetuned spatial access methods (SAMs), to answer several
Object Recognition from Local ScaleInvariant Features
"... An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in ..."
Abstract

Cited by 2739 (13 self)
 Add to MetaCart
in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients
Results 1  10
of
16,876