Results 1  10
of
135,194
MCMASSLK: A model checker for the verification of strategy logic specifications
 In Proceedings of the 26th International Conference on Computer Aided Verification (CAV’14), LNCS 8559
"... Model checking has come of age. A number of techniques are increasingly used in industrial setting to verify hardware and software systems, both against models and concrete implementations. While it is generally accepted that obstacles still remain, notably handling infinite state systems efficientl ..."
Abstract

Cited by 9 (6 self)
 Add to MetaCart
Model checking has come of age. A number of techniques are increasingly used in industrial setting to verify hardware and software systems, both against models and concrete implementations. While it is generally accepted that obstacles still remain, notably handling infinite state systems
Automatic verification of finitestate concurrent systems using temporal logic specifications
 ACM Transactions on Programming Languages and Systems
, 1986
"... We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent ..."
Abstract

Cited by 1384 (62 self)
 Add to MetaCart
We give an efficient procedure for verifying that a finitestate concurrent system meets a specification expressed in a (propositional, branchingtime) temporal logic. Our algorithm has complexity linear in both the size of the specification and the size of the global state graph for the concurrent
PVS: A Prototype Verification System
 CADE
, 1992
"... PVS is a prototype system for writing specifications and constructing proofs. Its development has been shaped by our experiences studying or using several other systems and performing a number of rather substantial formal verifications (e.g., [5,6,8]). PVS is fully implemented and freely available. ..."
Abstract

Cited by 654 (16 self)
 Add to MetaCart
PVS is a prototype system for writing specifications and constructing proofs. Its development has been shaped by our experiences studying or using several other systems and performing a number of rather substantial formal verifications (e.g., [5,6,8]). PVS is fully implemented and freely available
Alternatingtime Temporal Logic
 Journal of the ACM
, 1997
"... Temporal logic comes in two varieties: lineartime temporal logic assumes implicit universal quantification over all paths that are generated by system moves; branchingtime temporal logic allows explicit existential and universal quantification over all paths. We introduce a third, more general var ..."
Abstract

Cited by 615 (55 self)
 Add to MetaCart
for closed systems, alternatingtime logics are natural specification languages for open systems. For example, by preceding the temporal operator "eventually" with a selective path quantifier, we can specify that in the game between the system and the environment, the system has a strategy to reach
A Framework for Defining Logics
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1993
"... The Edinburgh Logical Framework (LF) provides a means to define (or present) logics. It is based on a general treatment of syntax, rules, and proofs by means of a typed calculus with dependent types. Syntax is treated in a style similar to, but more general than, MartinLof's system of ariti ..."
Abstract

Cited by 807 (45 self)
 Add to MetaCart
conditions and leads to a uniform treatment of rules and proofs whereby rules are viewed as proofs of higherorder judgements and proof checking is reduced to type checking. The practical benefit of our treatment of formal systems is that logicindependent tools such as proof editors and proof checkers
Symbolic Model Checking without BDDs
, 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract

Cited by 910 (74 self)
 Add to MetaCart
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis
Strategies of Discourse Comprehension
, 1983
"... El Salvador, Guatemala is a, study in black and white. On the left is a collection of extreme MarxistLeninist groups led by what one diplomat calls “a pretty faceless bunch of people.’ ’ On the right is an entrenched elite that has dominated Central America’s most populous country since a CIAbacke ..."
Abstract

Cited by 601 (27 self)
 Add to MetaCart
El Salvador, Guatemala is a, study in black and white. On the left is a collection of extreme MarxistLeninist groups led by what one diplomat calls “a pretty faceless bunch of people.’ ’ On the right is an entrenched elite that has dominated Central America’s most populous country since a CIA
Bandera: Extracting Finitestate Models from Java Source Code
 IN PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING
, 2000
"... Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a fini ..."
Abstract

Cited by 653 (35 self)
 Add to MetaCart
Finitestate verification techniques, such as model checking, have shown promise as a costeffective means for finding defects in hardware designs. To date, the application of these techniques to software has been hindered by several obstacles. Chief among these is the problem of constructing a
Symbolic Model Checking for Realtime Systems
 INFORMATION AND COMPUTATION
, 1992
"... We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given in an ..."
Abstract

Cited by 574 (50 self)
 Add to MetaCart
We describe finitestate programs over realnumbered time in a guardedcommand language with realvalued clocks or, equivalently, as finite automata with realvalued clocks. Model checking answers the question which states of a realtime program satisfy a branchingtime specification (given
Results 1  10
of
135,194