Results 1  10
of
370,637
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
Active Contours without Edges
, 2001
"... In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy ..."
Abstract

Cited by 1188 (37 self)
 Add to MetaCart
In this paper, we propose a new model for active contours to detect objects in a given image, based on techniques of curve evolution, MumfordShah functional for segmentation and level sets. Our model can detect objects whose boundaries are not necessarily defined by gradient. We minimize an energy which can be seen as a particular case of the minimal partition problem. In the level set formulation, the problem becomes a "meancurvature flow"like evolving the active contour, which will stop on the desired boundary. However, the stopping term does not depend on the gradient of the image, as in the classical active contour models, but is instead related to a particular segmentation of the image. We will give a numerical algorithm using finite differences. Finally, we will present various experimental results and in particular some examples for which the classical snakes methods based on the gradient are not applicable. Also, the initial curve can be anywhere in the image, and interior contours are automatically detected.
Property Testing and its connection to Learning and Approximation
"... We study the question of determining whether an unknown function has a particular property or is fflfar from any function with that property. A property testing algorithm is given a sample of the value of the function on instances drawn according to some distribution, and possibly may query the fun ..."
Abstract

Cited by 498 (68 self)
 Add to MetaCart
the function on instances of its choice. First, we establish some connections between property testing and problems in learning theory. Next, we focus on testing graph properties, and devise algorithms to test whether a graph has properties such as being kcolorable or having a aeclique (clique of density ae
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
. With this principle we derive a single operator shape which is optimal at any scale. The optimal detector has a simple approximate implementation in which edges are marked at maxima in gradient magnitude of a Gaussiansmoothed image. We extend this simple detector using operators of several widths to cope
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Interprocedural Slicing Using Dependence Graphs
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1990
"... ... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends previou ..."
Abstract

Cited by 822 (85 self)
 Add to MetaCart
... This paper concerns the problem of interprocedural slicinggenerating a slice of an entire program, where the slice crosses the boundaries of procedure calls. To solve this problem, we introduce a new kind of graph to represent programs, called a system dependence graph, which extends
A formal basis for architectural connection
 ACM TRANSACTIONS ON SOJIWARE ENGINEERING AND METHODOLOGY
, 1997
"... ..."
The program dependence graph and its use in optimization
 ACM Transactions on Programming Languages and Systems
, 1987
"... In this paper we present an intermediate program representation, called the program dependence graph (PDG), that makes explicit both the data and control dependence5 for each operation in a program. Data dependences have been used to represent only the relevant data flow relationships of a program. ..."
Abstract

Cited by 989 (3 self)
 Add to MetaCart
. Control dependence5 are introduced to analogously represent only the essential control flow relationships of a program. Control dependences are derived from the usual control flow graph. Many traditional optimizations operate more efficiently on the PDG. Since dependences in the PDG connect
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract

Cited by 534 (48 self)
 Add to MetaCart
, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should
Results 1  10
of
370,637