Results 1  10
of
389,576
Lower Bounds for Exact Model Counting and Applications in Probabilistic Databases
, 2013
"... The best current methods for exactly computing the number of satisfying assignments, or the satisfying probability, of Boolean formulas can be seen, either directly or indirectly, as building decisionDNNF (decision decomposable negation normal form) representations of the input Boolean formulas. De ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
of decisionDNNFs from dDNNFs and a generalization of decisionDNNFs known as ANDFBDDs. Finally we show how these imply exponential lower bounds for natural problems associated with probabilistic databases.
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
of the relational structure present in our database. This paper builds on the recent work on probabilistic relational models (PRMs), and describes how to learn them from databases. PRMs allow the properties of an object to depend probabilistically both on other properties of that object and on properties of related
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract

Cited by 1207 (11 self)
 Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 760 (9 self)
 Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent
A Bayesian method for the induction of probabilistic networks from data
 MACHINE LEARNING
, 1992
"... This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction of probabili ..."
Abstract

Cited by 1381 (32 self)
 Add to MetaCart
This paper presents a Bayesian method for constructing probabilistic networks from databases. In particular, we focus on constructing Bayesian belief networks. Potential applications include computerassisted hypothesis testing, automated scientific discovery, and automated construction
Exact Sampling with Coupled Markov Chains and Applications to Statistical Mechanics
, 1996
"... For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain has ..."
Abstract

Cited by 548 (13 self)
 Add to MetaCart
For many applications it is useful to sample from a finite set of objects in accordance with some particular distribution. One approach is to run an ergodic (i.e., irreducible aperiodic) Markov chain whose stationary distribution is the desired distribution on this set; after the Markov chain
Probabilistic Roadmaps for Path Planning in HighDimensional Configuration Spaces
 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION
, 1996
"... A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose edg ..."
Abstract

Cited by 1276 (124 self)
 Add to MetaCart
A new motion planning method for robots in static workspaces is presented. This method proceeds in two phases: a learning phase and a query phase. In the learning phase, a probabilistic roadmap is constructed and stored as a graph whose nodes correspond to collisionfree configurations and whose
Dynamic Itemset Counting and Implication Rules for Market Basket Data
, 1997
"... We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We in ..."
Abstract

Cited by 599 (6 self)
 Add to MetaCart
We consider the problem of analyzing marketbasket data and present several important contributions. First, we present a new algorithm for finding large itemsets which uses fewer passes over the data than classic algorithms, and yet uses fewer candidate itemsets than methods based on sampling. We investigate the idea of item reordering, which can improve the lowlevel efficiency of the algorithm. Second, we present a new way of generating "implication rules," which are normalized based on both the antecedent and the consequent and are truly implications (not simply a measure of cooccurrence), and we show how they produce more intuitive results than other methods. Finally, we show how different characteristics of real data, as opposed to synthetic data, can dramatically affect the performance of the system and the form of the results. 1 Introduction Within the area of data mining, the problem of deriving associations from data has recently received a great deal of attention. The prob...
Querying objectoriented databases
 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 1992
"... We present a novel language for querying objectoriented databases. The language is built around the idea of extended path expressions that substantially generalize [ZAN83], and on an adaptation of the firstorder formalization of objectoriented languages from [KW89, KLW90, KW92]. The language inco ..."
Abstract

Cited by 493 (6 self)
 Add to MetaCart
We present a novel language for querying objectoriented databases. The language is built around the idea of extended path expressions that substantially generalize [ZAN83], and on an adaptation of the firstorder formalization of objectoriented languages from [KW89, KLW90, KW92]. The language
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particular realization of the N = 2 theories, the resulting string field theory is equivalent to a topological theory in six dimensions, the Kodaira– Spencer theory, which may be viewed as the closed string analog of the Chern–Simon theory. Using the mirror map this leads to computation of the ‘number ’ of holomorphic curves of higher genus curves in Calabi–Yau manifolds. It is shown that topological amplitudes can also be reinterpreted as computing corrections to superpotential terms appearing in the effective 4d theory resulting from compactification of standard 10d superstrings on the corresponding N = 2 theory. Relations with c = 1 strings are also pointed out.
Results 1  10
of
389,576