Results 1  10
of
1,191,413
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
higher dimensional space. The algorithm provides a computationally efficient approach to nonlinear dimensionality reduction that has locality preserving properties and a natural connection to clustering. Several applications are considered.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
GPSless Low Cost Outdoor Localization For Very Small Devices
, 2000
"... Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given no ..."
Abstract

Cited by 994 (29 self)
 Add to MetaCart
Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, light, untethered and unobtrusive. The problem of localization, i.e., determining where a given
Principled design of the modern web architecture
 ACM Trans. Internet Techn
"... The World Wide Web has succeeded in large part because its software architecture has been designed to meet the needs of an Internetscale distributed hypermedia system. The modern Web architecture emphasizes scalability of component interactions, generality of interfaces, independent deployment of c ..."
Abstract

Cited by 507 (14 self)
 Add to MetaCart
The World Wide Web has succeeded in large part because its software architecture has been designed to meet the needs of an Internetscale distributed hypermedia system. The modern Web architecture emphasizes scalability of component interactions, generality of interfaces, independent deployment
LOF: Identifying DensityBased Local Outliers
 PROCEEDINGS OF THE 2000 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA
, 2000
"... For many KDD applications, such as detecting criminal activities in Ecommerce, finding the rare instances or the outliers, can be more interesting than finding the common patterns. Existing work in outlier detection regards being an outlier as a binary property. In this paper, we contend that for m ..."
Abstract

Cited by 499 (14 self)
 Add to MetaCart
that for many scenarios, it is more meaningful to assign to each object a degree of being an outlier. This degree is called the local outlier factor (LOF) of an object. It is local in that the degree depends on how isolated the object is with respect to the surrounding neighborhood. We give a detailed formal
Blind Signal Separation: Statistical Principles
, 2003
"... Blind signal separation (BSS) and independent component analysis (ICA) are emerging techniques of array processing and data analysis, aiming at recovering unobserved signals or `sources' from observed mixtures (typically, the output of an array of sensors), exploiting only the assumption of mut ..."
Abstract

Cited by 522 (4 self)
 Add to MetaCart
, to show how they stem from basic principles and how they relate to each other.
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
A Theory of Diagnosis from First Principles
 ARTIFICIAL INTELLIGENCE
, 1987
"... Suppose one is given a description of a system, together with an observation of the system's behaviour which conflicts with the way the system is meant to behave. The diagnostic problem is to determine those components of the system which, when assumed to be functioning abnormally, will explain ..."
Abstract

Cited by 1117 (5 self)
 Add to MetaCart
, the theory accommodates diagnostic reasoning in a wide variety of practical settings, including digital and analogue circuits, medicine, and database updates. The theory leads to an algorithm for computing all diagnoses, and to various results concerning principles of measurement for discriminating among
Understanding Normal and Impaired Word Reading: Computational Principles in QuasiRegular Domains
 PSYCHOLOGICAL REVIEW
, 1996
"... We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phono ..."
Abstract

Cited by 583 (94 self)
 Add to MetaCart
We develop a connectionist approach to processing in quasiregular domains, as exemplified by English word reading. A consideration of the shortcomings of a previous implementation (Seidenberg & McClelland, 1989, Psych. Rev.) in reading nonwords leads to the development of orthographic and phonological representations that capture better the relevant structure among the written and spoken forms of words. In a number of simulation experiments, networks using the new representations learn to read both regular and exception words, including lowfrequency exception words, and yet are still able to read pronounceable nonwords as well as skilled readers. A mathematical analysis of the effects of word frequency and spellingsound consistency in a related but simpler system serves to clarify the close relationship of these factors in influencing naming latencies. These insights are verified in subsequent simulations, including an attractor network that reproduces the naming latency data directly in its time to settle on a response. Further analyses of the network's ability to reproduce data on impaired reading in surface dyslexia support a view of the reading system that incorporates a graded divisionoflabor between semantic and phonological processes. Such a view is consistent with the more general Seidenberg and McClelland framework and has some similarities withbut also important differences fromthe standard dualroute account.
Results 1  10
of
1,191,413