Results 1  10
of
395,964
LinearQuadratic Mean Field Games
"... As an organic combination of mean field theory in statistical physics and (nonzero sum) stochastic differential games, Mean Field Games (MFGs) has become a very popular research topic in the fields ranging from physical and social sciences to engineering applications, see for example the earlier s ..."
Abstract
 Add to MetaCart
of equilibrium strategies of these LinearQuadratic Mean Field Games (LQMFGs). Due to the linearity of the adjoint equations, the optimal mean field term satisfies a forwardbackward ordinary differential equation. For the one dimensional case, we show that the equilibrium strategy always exists uniquely
Linearquadratic control of backward stochastic differential equations
 SIAM J. CONTROL OPTIM
, 2001
"... This paper is concerned with optimal control of linear backward stochastic differential equations (BSDEs) with a quadratic cost criteria, or backward linearquadratic (BLQ) control. The solution of this problemis obtained completely and explicitly by using an approach which is based primarily on the ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
This paper is concerned with optimal control of linear backward stochastic differential equations (BSDEs) with a quadratic cost criteria, or backward linearquadratic (BLQ) control. The solution of this problemis obtained completely and explicitly by using an approach which is based primarily
Stochastic Perturbation Theory
, 1988
"... . In this paper classical matrix perturbation theory is approached from a probabilistic point of view. The perturbed quantity is approximated by a firstorder perturbation expansion, in which the perturbation is assumed to be random. This permits the computation of statistics estimating the variatio ..."
Abstract

Cited by 886 (35 self)
 Add to MetaCart
and the eigenvalue problem. Key words. perturbation theory, random matrix, linear system, least squares, eigenvalue, eigenvector, invariant subspace, singular value AMS(MOS) subject classifications. 15A06, 15A12, 15A18, 15A52, 15A60 1. Introduction. Let A be a matrix and let F be a matrix valued function of A
The Valuation of Options for Alternative Stochastic Processes
 Journal of Financial Economics
, 1976
"... This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas, ..."
Abstract

Cited by 661 (4 self)
 Add to MetaCart
This paper examines the structure of option valuation problems and develops a new technique for their solution. It also introduces several jump and diffusion processes which have nol been used in previous models. The technique is applied lo these processes to find explicit option valuation formulas
Optimization Flow Control, I: Basic Algorithm and Convergence
 IEEE/ACM TRANSACTIONS ON NETWORKING
, 1999
"... We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm. In thi ..."
Abstract

Cited by 690 (64 self)
 Add to MetaCart
We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using gradient projection algorithm
Differential privacy . . .
, 2009
"... We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call ProposeTestRelease (PTR), and for which we give a formal definit ..."
Abstract

Cited by 629 (10 self)
 Add to MetaCart
We show by means of several examples that robust statistical estimators present an excellent starting point for differentially private estimators. Our algorithms use a new paradigm for differentially private mechanisms, which we call ProposeTestRelease (PTR), and for which we give a formal
Contour Tracking By Stochastic Propagation of Conditional Density
, 1996
"... . In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent s ..."
Abstract

Cited by 658 (24 self)
 Add to MetaCart
. In Proc. European Conf. Computer Vision, 1996, pp. 343356, Cambridge, UK The problem of tracking curves in dense visual clutter is a challenging one. Trackers based on Kalman filters are of limited use; because they are based on Gaussian densities which are unimodal, they cannot represent
Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
, 1998
"... SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This pape ..."
Abstract

Cited by 1334 (4 self)
 Add to MetaCart
SeDuMi is an addon for MATLAB, that lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity
Particle swarm optimization
, 1995
"... eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described, and applications ..."
Abstract

Cited by 3535 (22 self)
 Add to MetaCart
eberhart @ engr.iupui.edu A concept for the optimization of nonlinear functions using particle swarm methodology is introduced. The evolution of several paradigms is outlined, and an implementation of one of the paradigms is discussed. Benchmark testing of the paradigm is described
Results 1  10
of
395,964