Results 1  10
of
398,241
Linear System Identification via Atomic Norm Regularization
"... This paper proposes a new algorithm for linear system identification from noisy measurements. The proposed algorithm balances a data fidelity term with a norm induced by the set of single pole filters. We pose a convex optimization problem that approximately solves the atomic norm minimization probl ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
This paper proposes a new algorithm for linear system identification from noisy measurements. The proposed algorithm balances a data fidelity term with a norm induced by the set of single pole filters. We pose a convex optimization problem that approximately solves the atomic norm minimization
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 568 (23 self)
 Add to MetaCart
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding
For Most Large Underdetermined Systems of Linear Equations the Minimal ℓ1norm Solution is also the Sparsest Solution
 Comm. Pure Appl. Math
, 2004
"... We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so that ..."
Abstract

Cited by 560 (10 self)
 Add to MetaCart
We consider linear equations y = Φα where y is a given vector in R n, Φ is a given n by m matrix with n < m ≤ An, and we wish to solve for α ∈ R m. We suppose that the columns of Φ are normalized to unit ℓ 2 norm 1 and we place uniform measure on such Φ. We prove the existence of ρ = ρ(A) so
Lightweight causal and atomic group multicast
 ACM TRANSACTIONS ON COMPUTER SYSTEMS
, 1991
"... ..."
LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares
 ACM Trans. Math. Software
, 1982
"... An iterative method is given for solving Ax ~ffi b and minU Ax b 112, where the matrix A is large and sparse. The method is based on the bidiagonalization procedure of Golub and Kahan. It is analytically equivalent to the standard method of conjugate gradients, but possesses more favorable numerica ..."
Abstract

Cited by 649 (21 self)
 Add to MetaCart
gradient algorithms, indicating that I~QR is the most reliable algorithm when A is illconditioned. Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: ApprorJmationleast squares approximation; G.1.3 [Numerical Analysis]: Numerical Linear Algebralinear systems (direct and
An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
, 2008
"... ..."
Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev
, 1995
"... cultivation.of individual microbial cells without Phylogenetic identification and in situ detection ..."
Abstract

Cited by 1070 (29 self)
 Add to MetaCart
cultivation.of individual microbial cells without Phylogenetic identification and in situ detection
The Google File System
 ACM SIGOPS Operating Systems Review
"... We have designed and implemented the Google File System, a scalable distributed file system for large distributed dataintensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While ..."
Abstract

Cited by 1470 (2 self)
 Add to MetaCart
We have designed and implemented the Google File System, a scalable distributed file system for large distributed dataintensive applications. It provides fault tolerance while running on inexpensive commodity hardware, and it delivers high aggregate performance to a large number of clients. While
The Unix TimeSharing System
 Communications of the ACM
, 1974
"... Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable vol ..."
Abstract

Cited by 536 (14 self)
 Add to MetaCart
Unix is a generalpurpose, multiuser, interactive operating system for the larger Digital Equipment Corporation PDP11 and the Interdata 8/32 computers. It offers a number of features seldom found even in larger operating systems, including i A hierarchical file system incorporating demountable
Linear spatial pyramid matching using sparse coding for image classification
 in IEEE Conference on Computer Vision and Pattern Recognition(CVPR
, 2009
"... Recently SVMs using spatial pyramid matching (SPM) kernel have been highly successful in image classification. Despite its popularity, these nonlinear SVMs have a complexity O(n 2 ∼ n 3) in training and O(n) in testing, where n is the training size, implying that it is nontrivial to scaleup the algo ..."
Abstract

Cited by 488 (19 self)
 Add to MetaCart
the algorithms to handle more than thousands of training images. In this paper we develop an extension of the SPM method, by generalizing vector quantization to sparse coding followed by multiscale spatial max pooling, and propose a linear SPM kernel based on SIFT sparse codes. This new approach remarkably
Results 1  10
of
398,241