Results 1  10
of
1,307,930
Level Sets and Distance Functions
 Proc. of the Europ. Conf. on Comp. Vis., volume 1842 of LNCS
, 2000
"... This paper is concerned with the simulation of the Partial Differential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher an ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
and Sethian propose to evolve the distance function with a HamiltonJacobi equation. Unfortunately the solution to this equation is not a distance function. As a consequence, the practical application of the level set method is plagued with such questions as when do we have to "
CRITICAL VALUES AND LEVEL SETS OF DISTANCE FUNCTIONS IN RIEMANNIAN, ALEXANDROV AND MINKOWSKI SPACES
"... Abstract. Let F ⊂ Rn be a closed set and n = 2 or n = 3. S. Ferry (1975) proved that then, for almost all r> 0, the level set (distance sphere, rboundary) Sr(F): = {x ∈ Rn: dist(x, F) = r} is a topological (n − 1)dimensional manifold. This result was improved by J.H.G. Fu (1985). We show that ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. Let F ⊂ Rn be a closed set and n = 2 or n = 3. S. Ferry (1975) proved that then, for almost all r> 0, the level set (distance sphere, rboundary) Sr(F): = {x ∈ Rn: dist(x, F) = r} is a topological (n − 1)dimensional manifold. This result was improved by J.H.G. Fu (1985). We show
Shape modeling with front propagation: A level set approach
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1995
"... Abstract Shape modeling is an important constituent of computer vision as well as computer graphics research. Shape models aid the tasks of object representation and recognition. This paper presents a new approach to shape modeling which retains some of the attractive features of existing methods ..."
Abstract

Cited by 804 (20 self)
 Add to MetaCart
secting, hypersurface flowing along its gradient field with constant speed or a speed that depends on the curvature. It is moved by solving a “HamiltonJacob? ’ type equation written for a function in which the interface is a particular level set. A speed term synthesizpd from the image is used to stop the interface
Predicting Internet Network Distance with CoordinatesBased Approaches
 In INFOCOM
, 2001
"... In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which is bas ..."
Abstract

Cited by 633 (5 self)
 Add to MetaCart
In this paper, we propose to use coordinatesbased mechanisms in a peertopeer architecture to predict Internet network distance (i.e. roundtrip propagation and transmission delay) . We study two mechanisms. The first is a previously proposed scheme, called the triangulated heuristic, which
Distance Metric Learning, With Application To Clustering With SideInformation
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 15
, 2003
"... Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as Kmeans initially fails to find one that is meaningful to a user, the only recourse may be for the us ..."
Abstract

Cited by 799 (14 self)
 Add to MetaCart
examples. In this paper, we present an algorithm that, given examples of similar (and, if desired, dissimilar) pairs of points in R , learns a distance metric over R that respects these relationships. Our method is based on posing metric learning as a convex optimization problem, which allows us
Adhoc OnDemand Distance Vector Routing
 IN PROCEEDINGS OF THE 2ND IEEE WORKSHOP ON MOBILE COMPUTING SYSTEMS AND APPLICATIONS
, 1997
"... An adhoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Adhoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such adhoc n ..."
Abstract

Cited by 3167 (15 self)
 Add to MetaCart
An adhoc network is the cooperative engagement of a collection of mobile nodes without the required intervention of any centralized access point or existing infrastructure. In this paper we present Adhoc On Demand Distance Vector Routing (AODV), a novel algorithm for the operation of such ad
SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks
, 2003
"... An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance vec ..."
Abstract

Cited by 522 (8 self)
 Add to MetaCart
An ad hoc network is a collection of wireless computers (nodes), communicating among themselves over possibly multihop paths, without the help of any infrastructure such as base stations or access points. Although many previous ad hoc network routing protocols have been based in part on distance
A Threshold of ln n for Approximating Set Cover
 JOURNAL OF THE ACM
, 1998
"... Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NPhar ..."
Abstract

Cited by 778 (5 self)
 Add to MetaCart
Given a collection F of subsets of S = f1; : : : ; ng, set cover is the problem of selecting as few as possible subsets from F such that their union covers S, and max kcover is the problem of selecting k subsets from F such that their union has maximum cardinality. Both these problems are NP
The pyramid match kernel: Discriminative classification with sets of image features
 IN ICCV
, 2005
"... Discriminative learning is challenging when examples are sets of features, and the sets vary in cardinality and lack any sort of meaningful ordering. Kernelbased classification methods can learn complex decision boundaries, but a kernel over unordered set inputs must somehow solve for correspondenc ..."
Abstract

Cited by 546 (29 self)
 Add to MetaCart
for correspondences – generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function which maps unordered feature sets to multiresolution histograms and computes a weighted histogram intersection in this space. This “pyramid match” computation is linear
The Plenoptic Function and the Elements of Early Vision
 Computational Models of Visual Processing
, 1991
"... experiment. Electrophysiologists have described neurons in striate cortex that are selectively sensitive to certain visual properties; for reviews, see Hubel (1988) and DeValois and DeValois (1988). Psychophysicists have inferred the existence of channels that are tuned for certain visual properties ..."
Abstract

Cited by 573 (4 self)
 Add to MetaCart
Retinal processing Early vision Memory Higherlevel vision Etc... Retina More processing Still more processing Orientation Fig.1.1 A generic diagram for visual processing. In this approach, early vision consists of a set of parallel pathways, each analyzing some particular aspect of the visual stimulus
Results 1  10
of
1,307,930