Results 1  10
of
8,064
Learning logical definitions from relations
 MACHINE LEARNING
, 1990
"... This paper describes FOIL, a system that learns Horn clauses from data expressed as relations. FOIL is based on ideas that have proved effective in attributevalue learning systems, but extends them to a firstorder formalism. This new system has been applied successfully to several tasks taken fro ..."
Abstract

Cited by 935 (8 self)
 Add to MetaCart
This paper describes FOIL, a system that learns Horn clauses from data expressed as relations. FOIL is based on ideas that have proved effective in attributevalue learning systems, but extends them to a firstorder formalism. This new system has been applied successfully to several tasks taken
Learning to predict by the methods of temporal differences
 MACHINE LEARNING
, 1988
"... This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional predictionlearning methods assign credit by means of the difference between predi ..."
Abstract

Cited by 1521 (56 self)
 Add to MetaCart
, they have remained poorly understood. Here we prove their convergence and optimality for special cases and relate them to supervisedlearning methods. For most realworld prediction problems, temporaldifference methods require less memory and less peak computation than conventional methods and they produce
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning al ..."
Abstract

Cited by 578 (16 self)
 Add to MetaCart
We propose a family of learning algorithms based on a new form of regularization that allows us to exploit the geometry of the marginal distribution. We focus on a semisupervised framework that incorporates labeled and unlabeled data in a generalpurpose learner. Some transductive graph learning
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2000
"... We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class ..."
Abstract

Cited by 561 (20 self)
 Add to MetaCart
We present a unifying framework for studying the solution of multiclass categorization problems by reducing them to multiple binary problems that are then solved using a marginbased binary learning algorithm. The proposed framework unifies some of the most popular approaches in which each class
Crowds: Anonymity for Web Transactions
 ACM Transactions on Information and System Security
, 1997
"... this paper we introduce a system called Crowds for protecting users' anonymity on the worldwide web. Crowds, named for the notion of "blending into a crowd", operates by grouping users into a large and geographically diverse group (crowd) that collectively issues requests on behalf o ..."
Abstract

Cited by 838 (13 self)
 Add to MetaCart
of its members. Web servers are unable to learn the true source of a request because it is equally likely to have originated from any member of the crowd, and even collaborating crowd members cannot distinguish the originator of a request from a member who is merely forwarding the request on behalf
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 542 (20 self)
 Add to MetaCart
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a
Calibrating noise to sensitivity in private data analysis
 In Proceedings of the 3rd Theory of Cryptography Conference
, 2006
"... Abstract. We continue a line of research initiated in [10, 11] on privacypreserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the socalled true answer is the result of applying f to the datab ..."
Abstract

Cited by 649 (60 self)
 Add to MetaCart
the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single
Policy gradient methods for reinforcement learning with function approximation.
 In NIPS,
, 1999
"... Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly repres ..."
Abstract

Cited by 439 (20 self)
 Add to MetaCart
Abstract Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining a policy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly
The Foundations of CostSensitive Learning
 In Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
, 2001
"... This paper revisits the problem of optimal learning and decisionmaking when different misclassification errors incur different penalties. We characterize precisely but intuitively when a cost matrix is reasonable, and we show how to avoid the mistake of defining a cost matrix that is economically i ..."
Abstract

Cited by 402 (6 self)
 Add to MetaCart
incoherent. For the twoclass case, we prove a theorem that shows how to change the proportion of negative examples in a training set in order to make optimal costsensitive classification decisions using a classifier learned by a standard noncostsensitive learning method. However, we then argue
InformationBased Objective Functions for Active Data Selection
 Neural Computation
"... Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed which measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain infor ..."
Abstract

Cited by 428 (4 self)
 Add to MetaCart
Learning can be made more efficient if we can actively select particularly salient data points. Within a Bayesian learning framework, objective functions are discussed which measure the expected informativeness of candidate measurements. Three alternative specifications of what we want to gain
Results 1  10
of
8,064