Results 1  10
of
1,433,106
Learning from multiple annotators with gaussian processes
 In: Proceedings of the Artificial Neural Networks and Machine Learningâ€”ICANN 2011 21st International Conference on Artificial Neural Networks, Part
, 2011
"... Abstract. In many supervised learning tasks it can be costly or infeasible to obtain objective, reliable labels. We may, however, be able to obtain a large number of subjective, possibly noisy, labels from multiple annotators. Typically, annotators have different levels of expertise (i.e., novice, ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Abstract. In many supervised learning tasks it can be costly or infeasible to obtain objective, reliable labels. We may, however, be able to obtain a large number of subjective, possibly noisy, labels from multiple annotators. Typically, annotators have different levels of expertise (i.e., novice
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn
LabelMe: A Database and WebBased Tool for Image Annotation
, 2008
"... We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a webbased tool that allows easy image annotation and instant sha ..."
Abstract

Cited by 670 (47 self)
 Add to MetaCart
We seek to build a large collection of images with ground truth labels to be used for object detection and recognition research. Such data is useful for supervised learning and quantitative evaluation. To achieve this, we developed a webbased tool that allows easy image annotation and instant
Activity recognition from userannotated acceleration data
, 2004
"... In this work, algorithms are developed and evaluated to detect physical activities from data acquired using five small biaxial accelerometers worn simultaneously on different parts of the body. Acceleration data was collected from 20 subjects without researcher supervision or observation. Subjects ..."
Abstract

Cited by 492 (7 self)
 Add to MetaCart
In this work, algorithms are developed and evaluated to detect physical activities from data acquired using five small biaxial accelerometers worn simultaneously on different parts of the body. Acceleration data was collected from 20 subjects without researcher supervision or observation
The Proposition Bank: An Annotated Corpus of Semantic Roles
 Computational Linguistics
, 2005
"... The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicateargument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent corefere ..."
Abstract

Cited by 536 (21 self)
 Add to MetaCart
coreference, quantification, and many other higherorder phenomena, but also broad, in that it covers every instance of every verb in the corpus and allows representative statistics to be calculated. We discuss the criteria used to define the sets of semantic roles used in the annotation process
Capacity of multiantenna Gaussian channels
 EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
, 1999
"... We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such form ..."
Abstract

Cited by 2878 (6 self)
 Add to MetaCart
We investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray manifold, beamforming is made robust with respect to array deformations, distortion of the wave front, pointing errors, etc ... so that neither array calibration nor physical modeling are necessary. Rather surprisingly, `blind beamformers' may outperform `informed beamformers' in a plausible range of parameters, even when the array is perfectly known to the informed beamformer. The key assumption blind identification relies on is the statistical independence of the sources, which we exploit using fourthorder cumulants. A computationally efficient technique is presented for the blind estimation of directional vectors, based on joint diagonalization of 4thorder cumulant matrices
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a MixtureofGaussians
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Results 1  10
of
1,433,106