Results 1  10
of
566,556
Learning DomainIndependent String Transformation Weights for High Accuracy Object Identification
 In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2002
, 2002
"... The task of object identification occurs when integrating information from multiple websites. The same data objects can exist in inconsistent text formats across sites, making it difficult to identify matching objects using exact text match. Previous methods of object identification have required ma ..."
Abstract

Cited by 137 (8 self)
 Add to MetaCart
applies a set of domainindependent string transformations to compare the objects' shared attributes in order to identify matching objects. In this paper, we discuss extensions to the Active Atlas system, which allow it to learn to tailor the weights of a set of general transformations to a specific
Learning DomainIndependent String Transformation
 In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2002
, 2002
"... The task of object identification occurs when integrating information from multiple websites. The same data objects can exist in inconsistent text formats across sites, making it di#cult to identify matching objects using exact text match. Previous methods of object identification have required manu ..."
Abstract
 Add to MetaCart
applies a set of domainindependent string transformations to compare the objects' shared attributes in order to identify matching objects. In this paper, we discuss extensions to the Active Atlas system, which allow it to learn to tailor the weights of a set of general transformations to a specific
Probabilistic Visual Learning for Object Representation
, 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixtureof ..."
Abstract

Cited by 705 (15 self)
 Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in highdimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
String theory and noncommutative geometry
 JHEP
, 1999
"... We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from ..."
Abstract

Cited by 801 (8 self)
 Add to MetaCart
We extend earlier ideas about the appearance of noncommutative geometry in string theory with a nonzero Bfield. We identify a limit in which the entire string dynamics is described by a minimally coupled (supersymmetric) gauge theory on a noncommutative space, and discuss the corrections away from
Text Chunking using TransformationBased Learning
, 1995
"... Eric Brill introduced transformationbased learning and showed that it can do partofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including nonrecursive "baseNP" chunks. For ..."
Abstract

Cited by 509 (0 self)
 Add to MetaCart
Eric Brill introduced transformationbased learning and showed that it can do partofspeech tagging with fairly high accuracy. The same method can be applied at a higher level of textual interpretation for locating chunks in the tagged text, including nonrecursive "baseNP" chunks
KodairaSpencer theory of gravity and exact results for quantum string amplitudes
 Commun. Math. Phys
, 1994
"... We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a particu ..."
Abstract

Cited by 545 (60 self)
 Add to MetaCart
We develop techniques to compute higher loop string amplitudes for twisted N = 2 theories with ĉ = 3 (i.e. the critical case). An important ingredient is the discovery of an anomaly at every genus in decoupling of BRST trivial states, captured to all orders by a master anomaly equation. In a
Basic objects in natural categories
 COGNITIVE PSYCHOLOGY
, 1976
"... Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest categ ..."
Abstract

Cited by 856 (1 self)
 Add to MetaCart
Categorizations which humans make of the concrete world are not arbitrary but highly determined. In taxonomies of concrete objects, there is one level of abstraction at which the most basic category cuts are made. Basic categories are those which carry the most information, possess the highest
Shape Matching and Object Recognition Using Shape Contexts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning transform ..."
Abstract

Cited by 1787 (21 self)
 Add to MetaCart
We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by (1) solv ing for correspondences between points on the two shapes, (2) using the correspondences to estimate an aligning
Ensemble Methods in Machine Learning
 MULTIPLE CLASSIFIER SYSTEMS, LBCS1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging, and boostin ..."
Abstract

Cited by 607 (3 self)
 Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging
Results 1  10
of
566,556