Results 1 - 10
of
245,369
Computing semantic relatedness using Wikipedia-based explicit semantic analysis
- In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract
-
Cited by 546 (9 self)
- Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract
-
Cited by 1207 (11 self)
- Add to MetaCart
model is able to deal with domain-specific synonymy as well as with polysemous words. In contrast to standard Latent Semantic Indexing (LSI) by Singular Value Decomposition, the probabilistic variant has a solid statistical foundation and defines a proper generative data model. Retrieval experiments
Verb Semantics And Lexical Selection
, 1994
"... ... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor and new ..."
Abstract
-
Cited by 520 (4 self)
- Add to MetaCart
... structure. As Levin has addressed (Levin 1985), the decomposition of verbs is proposed for the purposes of accounting for systematic semantic-syntactic correspondences. This results in a series of problems for MT systems: inflexible verb sense definitions; difficulty in handling metaphor
SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries
- IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... The need for efficient content-based image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract
-
Cited by 541 (35 self)
- Add to MetaCart
), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. As in other regionbased retrieval systems, an image is represented by a set of regions, roughly corresponding to objects
Semantic similarity based on corpus statistics and lexical taxonomy
- Proc of 10th International Conference on Research in Computational Linguistics, ROCLING’97
, 1997
"... This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better quantifie ..."
Abstract
-
Cited by 852 (0 self)
- Add to MetaCart
This paper presents a new approach for measuring semantic similarity/distance between words and concepts. It combines a lexical taxonomy structure with corpus statistical information so that the semantic distance between nodes in the semantic space constructed by the taxonomy can be better
The Proposition Bank: An Annotated Corpus of Semantic Roles
- Computational Linguistics
, 2005
"... The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent corefere ..."
Abstract
-
Cited by 536 (21 self)
- Add to MetaCart
The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent
Content-based image retrieval at the end of the early years
- IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract
-
Cited by 1594 (24 self)
- Add to MetaCart
The paper presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
- PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract
-
Cited by 1772 (10 self)
- Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis
Machine Learning in Automated Text Categorization
- ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract
-
Cited by 1658 (22 self)
- Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
Results 1 - 10
of
245,369