Results 1  10
of
235,687
Learning polynomials with neural networks
 In ICML
, 2014
"... We study the effectiveness of learning low degree polynomials using neural networks by the gradient descent method. While neural networks have been shown to have great expressive power, and gradient descent has been widely used in practice for learning neural networks, few theoretical guarantees a ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We study the effectiveness of learning low degree polynomials using neural networks by the gradient descent method. While neural networks have been shown to have great expressive power, and gradient descent has been widely used in practice for learning neural networks, few theoretical guarantees
Learning and development in neural networks: The importance of starting small
 Cognition
, 1993
"... It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time childhood when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain (language ..."
Abstract

Cited by 518 (18 self)
 Add to MetaCart
It is a striking fact that in humans the greatest learnmg occurs precisely at that point in time childhood when the most dramatic maturational changes also occur. This report describes possible synergistic interactions between maturational change and the ability to learn a complex domain
Evolving Artificial Neural Networks
, 1999
"... This paper: 1) reviews different combinations between ANN's and evolutionary algorithms (EA's), including using EA's to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA's; ..."
Abstract

Cited by 566 (6 self)
 Add to MetaCart
This paper: 1) reviews different combinations between ANN's and evolutionary algorithms (EA's), including using EA's to evolve ANN connection weights, architectures, learning rules, and input features; 2) discusses different search operators which have been used in various EA
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
, 1989
"... The exact form of a gradientfollowing learning algorithm for completely recurrent networks running in continually sampled time is derived and used as the basis for practical algorithms for temporal supervised learning tasks. These algorithms have: (1) the advantage that they do not require a precis ..."
Abstract

Cited by 529 (4 self)
 Add to MetaCart
the retention of information over time periods having either fixed or indefinite length. 1 Introduction A major problem in connectionist theory is to develop learning algorithms that can tap the full computational power of neural networks. Much progress has been made with feedforward networks, and attention
Evolving Neural Networks through Augmenting Topologies
 Evolutionary Computation
"... An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning task ..."
Abstract

Cited by 524 (113 self)
 Add to MetaCart
An important question in neuroevolution is how to gain an advantage from evolving neural network topologies along with weights. We present a method, NeuroEvolution of Augmenting Topologies (NEAT), which outperforms the best fixedtopology method on a challenging benchmark reinforcement learning
Neural network ensembles, cross validation, and active learning
 Neural Information Processing Systems 7
, 1995
"... Learning of continuous valued functions using neural network ensembles (committees) can give improved accuracy, reliable estimation of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members averaged over unlabeled data, so it qua ..."
Abstract

Cited by 469 (6 self)
 Add to MetaCart
Learning of continuous valued functions using neural network ensembles (committees) can give improved accuracy, reliable estimation of the generalization error, and active learning. The ambiguity is defined as the variation of the output of ensemble members averaged over unlabeled data, so
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
power, and their more complex counterparts (such as feed forward neural networks) may not be easy to work with
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 510 (17 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 677 (12 self)
 Add to MetaCart
, statisticallybased learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
A new learning algorithm for blind signal separation

, 1996
"... A new online learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of ..."
Abstract

Cited by 614 (80 self)
 Add to MetaCart
of the sources. The GramCharlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the online learning algorithm which has an equivariant property and is easily implemented on a neural
Results 1  10
of
235,687