Results 1  10
of
196,640
Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
"... In this paper, we propose a novel neural network model called RNN Encoder– Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixedlength vector representation, and the other decodes the representation into another sequence of symbols. The ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs com
Hierarchical phrasebased translation
 Computational Linguistics
, 2007
"... We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous contextfree grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from b ..."
Abstract

Cited by 588 (9 self)
 Add to MetaCart
We present a statistical machine translation model that uses hierarchical phrases—phrases that contain subphrases. The model is formally a synchronous contextfree grammar but is learned from a parallel text without any syntactic annotations. Thus it can be seen as combining fundamental ideas from
A hierarchical phrasebased model for statistical machine translation
 IN ACL
, 2005
"... We present a statistical phrasebased translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous contextfree grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery of ..."
Abstract

Cited by 479 (12 self)
 Add to MetaCart
We present a statistical phrasebased translation model that uses hierarchical phrases— phrases that contain subphrases. The model is formally a synchronous contextfree grammar but is learned from a bitext without any syntactic information. Thus it can be seen as a shift to the formal machinery
Minimum Error Rate Training in Statistical Machine Translation
, 2003
"... Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training cri ..."
Abstract

Cited by 663 (7 self)
 Add to MetaCart
Often, the training procedure for statistical machine translation models is based on maximum likelihood or related criteria. A general problem of this approach is that there is only a loose relation to the final translation quality on unseen text. In this paper, we analyze various training
The Alignment Template Approach to Statistical Machine Translation
, 2004
"... A phrasebased statistical machine translation approach — the alignment template approach — is described. This translation approach allows for general manytomany relations between words. Thereby, the context of words is taken into account in the translation model, and local changes in word order f ..."
Abstract

Cited by 479 (26 self)
 Add to MetaCart
from source to target language can be learned explicitly. The model is described using a loglinear modeling approach, which is a generalization of the often used source–channel approach. Thereby, the model is easier to extend than classical statistical machine translation systems. We describe
A learning algorithm for Boltzmann machines
 Cognitive Science
, 1985
"... The computotionol power of massively parallel networks of simple processing elements resides in the communication bandwidth provided by the hardware connections between elements. These connections con allow a significant fraction of the knowledge of the system to be applied to an instance of a probl ..."
Abstract

Cited by 586 (13 self)
 Add to MetaCart
. Second, there must be some way of choosing internal representations which allow the preexisting hardware connections to be used efficiently for encoding the constraints in the domain being searched. We describe a generol parallel search method, based on statistical mechanics, and we show how it leads
On the Properties of Neural Machine Translation: Encoder–Decoder Approaches
"... Neural machine translation is a relatively new approach to statistical machine translation based purely on neural networks. The neural machine translation models often consist of an encoder and a decoder. The encoder extracts a fixedlength representation from a variablelength input sentence, a ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
tence, and the decoder generates a correct translation from this representation. In this paper, we focus on analyzing the properties of the neural machine translation using two models; RNN Encoder–Decoder and a newly proposed gated recursive convolutional neural network. We show that the neural machine translation
Machine Learning in Automated Text Categorization
 ACM COMPUTING SURVEYS
, 2002
"... The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last ten years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this p ..."
Abstract

Cited by 1658 (22 self)
 Add to MetaCart
to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual
Discriminative Training and Maximum Entropy Models for Statistical Machine Translation
, 2002
"... We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language senten ..."
Abstract

Cited by 497 (30 self)
 Add to MetaCart
We present a framework for statistical machine translation of natural languages based on direct maximum entropy models, which contains the widely used source channel approach as a special case. All knowledge sources are treated as feature functions, which depend on the source language
Inductive Learning Algorithms and Representations for Text Categorization
, 1998
"... Text categorization – the assignment of natural language texts to one or more predefined categories based on their content – is an important component in many information organization and management tasks. We compare the effectiveness of five different automatic learning algorithms for text categori ..."
Abstract

Cited by 641 (8 self)
 Add to MetaCart
categorization in terms of learning speed, realtime classification speed, and classification accuracy. We also examine training set size, and alternative document representations. Very accurate text classifiers can be learned automatically from training examples. Linear Support Vector Machines (SVMs
Results 1  10
of
196,640