Results 1  10
of
1,642,840
What Can Economists Learn from Happiness Research?
 FORTHCOMING IN JOURNAL OF ECONOMIC LITERATURE
, 2002
"... Happiness is generally considered to be an ultimate goal in life; virtually everybody wants to be happy. The United States Declaration of Independence of 1776 takes it as a selfevident truth that the “pursuit of happiness” is an “unalienable right”, comparable to life and liberty. It follows that e ..."
Abstract

Cited by 543 (24 self)
 Add to MetaCart
for economists to consider happiness. The first is economic policy. At the microlevel, it is often impossible to make a Paretooptimal proposal, because a social action entails costs for some individuals. Hence an evaluation of the net effects, in terms of individual utilities, is needed. On an aggregate level
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 819 (27 self)
 Add to MetaCart
containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zero
Illusion and wellbeing: A social psychological perspective on mental health.
 Psychological Bulletin,
, 1988
"... Many prominent theorists have argued that accurate perceptions of the self, the world, and the future are essential for mental health. Yet considerable research evidence suggests that overly positive selfevaluations, exaggerated perceptions of control or mastery, and unrealistic optimism are charac ..."
Abstract

Cited by 984 (20 self)
 Add to MetaCart
evaluations, exaggerated perceptions of control or mastery, and unrealistic optimismcan serve a wide variety of cognitive, affective, and social functions. We also attempt to resolve the following paraPreparation of this article was supported by National Science Foundation Grant BNS 8308524, National Cancer Institute
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 541 (21 self)
 Add to MetaCart
runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to non
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 623 (12 self)
 Add to MetaCart
Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses
Predictive reward signal of dopamine neurons
 Journal of Neurophysiology
, 1998
"... Schultz, Wolfram. Predictive reward signal of dopamine neurons. is called rewards, which elicit and reinforce approach behavJ. Neurophysiol. 80: 1–27, 1998. The effects of lesions, receptor ior. The functions of rewards were developed further during blocking, electrical selfstimulation, and drugs ..."
Abstract

Cited by 742 (12 self)
 Add to MetaCart
of abuse suggest the evolution of higher mammals to support more sophistithat midbrain dopamine systems are involved in processing reward cated forms of individual and social behavior. Thus biologiinformation and learning approach behavior. Most dopamine neucal and cognitive needs define the nature
Graphical models, exponential families, and variational inference
, 2008
"... The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building largescale multivariate statistical models. Graphical models have become a focus of research in many statistical, computational and mathematical fiel ..."
Abstract

Cited by 817 (28 self)
 Add to MetaCart
fields, including bioinformatics, communication theory, statistical physics, combinatorial optimization, signal and image processing, information retrieval and statistical machine learning. Many problems that arise in specific instances — including the key problems of computing marginals and modes
Motivation through the Design of Work: Test of a Theory. Organizational Behavior and Human Performance,
, 1976
"... A model is proposed that specifies the conditions under which individuals will become internally motivated to perform effectively on their jobs. The model focuses on the interaction among three classes of variables: (a) the psychological states of employees that must be present for internally motiv ..."
Abstract

Cited by 615 (2 self)
 Add to MetaCart
with before the theory can be fully applied to realworld job design problems. First, means must be developed for measuring current levels of activation of individuals in actual work settings (cf. Thayer, 1967), and for assessing the "optimal level" of activation for different individuals. Until
A scaled conjugate gradient algorithm for fast supervised learning
 NEURAL NETWORKS
, 1993
"... A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural netwo ..."
Abstract

Cited by 452 (0 self)
 Add to MetaCart
A supervised learning algorithm (Scaled Conjugate Gradient, SCG) with superlinear convergence rate is introduced. The algorithm is based upon a class of optimization techniques well known in numerical analysis as the Conjugate Gradient Methods. SCG uses second order information from the neural
Support vector machine learning for interdependent and structured output spaces
 In ICML
, 2004
"... Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernelbased methods has focused on designing flexible and powerful input representations. This paper addresses the complementary issue of problems involving complex outputs suchas multiple depe ..."
Abstract

Cited by 447 (20 self)
 Add to MetaCart
dependent output variables and structured output spaces. We propose to generalize multiclass Support Vector Machine learning in a formulation that involves features extracted jointly from inputs and outputs. The resulting optimization problem is solved efficiently by a cutting plane algorithm that exploits
Results 1  10
of
1,642,840