Results 1  10
of
826,586
Learning mixtures of Gaussians using the kmeans algorithm. arXiv preprint arXiv:0912.0086
, 2009
"... ar ..."
Constrained Kmeans Clustering with Background Knowledge
 In ICML
, 2001
"... Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed ..."
Abstract

Cited by 473 (9 self)
 Add to MetaCart
Clustering is traditionally viewed as an unsupervised method for data analysis. However, in some cases information about the problem domain is available in addition to the data instances themselves. In this paper, we demonstrate how the popular kmeans clustering algorithm can be pro tably modi ed
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE TRANS IMAGE PROCESSING
, 2003
"... We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vecto ..."
Abstract

Cited by 514 (17 self)
 Add to MetaCart
We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian
Xmeans: Extending Kmeans with Efficient Estimation of the Number of Clusters
 In Proceedings of the 17th International Conf. on Machine Learning
, 2000
"... Despite its popularity for general clustering, Kmeans suffers three major shortcomings; it scales poorly computationally, the number of clusters K has to be supplied by the user, and the search is prone to local minima. We propose solutions for the first two problems, and a partial remedy for the t ..."
Abstract

Cited by 412 (5 self)
 Add to MetaCart
) measure. The innovations include two new ways of exploiting cached sufficient statistics and a new very efficient test that in one Kmeans sweep selects the most promising subset of classes for refinement. This gives rise to a fast, statistically founded algorithm that outputs both the number of classes
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn
Learning the k in kmeans
 In Proc. 17th NIPS
, 2003
"... When clustering a dataset, the right number k of clusters to use is often not obvious, and choosing k automatically is a hard algorithmic problem. In this paper we present an improved algorithm for learning k while clustering. The Gmeans algorithm is based on a statistical test for the hypothesis t ..."
Abstract

Cited by 134 (5 self)
 Add to MetaCart
When clustering a dataset, the right number k of clusters to use is often not obvious, and choosing k automatically is a hard algorithmic problem. In this paper we present an improved algorithm for learning k while clustering. The Gmeans algorithm is based on a statistical test for the hypothesis
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 677 (12 self)
 Add to MetaCart
, statisticallybased learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
Refining Initial Points for KMeans Clustering
, 1998
"... Practical approaches to clustering use an iterative procedure (e.g. KMeans, EM) which converges to one of numerous local minima. It is known that these iterative techniques are especially sensitive to initial starting conditions. We present a procedure for computing a refined starting condition fro ..."
Abstract

Cited by 308 (5 self)
 Add to MetaCart
Practical approaches to clustering use an iterative procedure (e.g. KMeans, EM) which converges to one of numerous local minima. It is known that these iterative techniques are especially sensitive to initial starting conditions. We present a procedure for computing a refined starting condition
Mixtures of Probabilistic Principal Component Analysers
, 1998
"... Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a com ..."
Abstract

Cited by 537 (6 self)
 Add to MetaCart
maximumlikelihood framework, based on a specific form of Gaussian latent variable model. This leads to a welldefined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context
Blind Beamforming for Non Gaussian Signals
 IEE ProceedingsF
, 1993
"... This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray mani ..."
Abstract

Cited by 704 (31 self)
 Add to MetaCart
This paper considers an application of blind identification to beamforming. The key point is to use estimates of directional vectors rather than resorting to their hypothesized value. By using estimates of the directional vectors obtained via blind identification i.e. without knowing the arrray
Results 1  10
of
826,586