Results 1 - 10
of
484,574
Probabilistic Latent Semantic Analysis
- In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract
-
Cited by 760 (9 self)
- Add to MetaCart
Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of two--mode and co-occurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent
Probabilistic Latent Semantic Indexing
, 1999
"... Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized ..."
Abstract
-
Cited by 1207 (11 self)
- Add to MetaCart
Probabilistic Latent Semantic Indexing is a novel approach to automated document indexing which is based on a statistical latent class model for factor analysis of count data. Fitted from a training corpus of text documents by a generalization of the Expectation Maximization algorithm, the utilized
Unsupervised Learning by Probabilistic Latent Semantic Analysis
- Machine Learning
, 2001
"... Abstract. This paper presents a novel statistical method for factor analysis of binary and count data which is closely related to a technique known as Latent Semantic Analysis. In contrast to the latter method which stems from linear algebra and performs a Singular Value Decomposition of co-occurren ..."
Abstract
-
Cited by 612 (4 self)
- Add to MetaCart
Maximization algorithm for model fitting, which has shown excellent performance in practice. Probabilistic Latent Semantic Analysis has many applications, most prominently in information retrieval, natural language processing, machine learning from text, and in related areas. The paper presents perplexity
The Proposition Bank: An Annotated Corpus of Semantic Roles
- Computational Linguistics
, 2005
"... The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent corefere ..."
Abstract
-
Cited by 536 (21 self)
- Add to MetaCart
The Proposition Bank project takes a practical approach to semantic representation, adding a layer of predicate-argument information, or semantic role labels, to the syntactic structures of the Penn Treebank. The resulting resource can be thought of as shallow, in that it does not represent
A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge
- PSYCHOLOGICAL REVIEW
, 1997
"... How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis (LS ..."
Abstract
-
Cited by 1772 (10 self)
- Add to MetaCart
How do people know as much as they do with as little information as they get? The problem takes many forms; learning vocabulary from text is an especially dramatic and convenient case for research. A new general theory of acquired similarity and knowledge representation, latent semantic analysis
Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language
, 1999
"... This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach. The a ..."
Abstract
-
Cited by 601 (9 self)
- Add to MetaCart
This article presents a measure of semantic similarityinanis-a taxonomy based on the notion of shared information content. Experimental evaluation against a benchmark set of human similarity judgments demonstrates that the measure performs better than the traditional edge-counting approach
Computing semantic relatedness using Wikipedia-based explicit semantic analysis
- In Proceedings of the 20th International Joint Conference on Artificial Intelligence
, 2007
"... Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from Wikipedi ..."
Abstract
-
Cited by 546 (9 self)
- Add to MetaCart
Computing semantic relatedness of natural language texts requires access to vast amounts of common-sense and domain-specific world knowledge. We propose Explicit Semantic Analysis (ESA), a novel method that represents the meaning of texts in a high-dimensional space of concepts derived from
The Symbol Grounding Problem
, 1990
"... There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system be m ..."
Abstract
-
Cited by 1072 (18 self)
- Add to MetaCart
There has been much discussion recently about the scope and limits of purely symbolic models of the mind and about the proper role of connectionism in cognitive modeling. This paper describes the "symbol grounding problem": How can the semantic interpretation of a formal symbol system
Automatic labeling of semantic roles
- Computational Linguistics
, 2002
"... We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1 ..."
Abstract
-
Cited by 742 (15 self)
- Add to MetaCart
We present a system for identifying the semantic relationships, or semantic roles, filled by constituents of a sentence within a semantic frame. Various lexical and syntactic features are derived from parse trees and used to derive statistical classifiers from hand-annotated training data. 1
Results 1 - 10
of
484,574