• Documents
  • Authors
  • Tables
  • Log in
  • Sign up
  • MetaCart
  • DMCA
  • Donate

CiteSeerX logo

Tools

Sorted by:
Try your query at:
Semantic Scholar Scholar Academic
Google Bing DBLP
Results 1 - 10 of 262,772
Next 10 →

A saliency-based search mechanism for overt and covert shifts of visual attention

by Laurent Itti, Christof Koch , 2000
"... ..."
Abstract - Cited by 608 (32 self) - Add to MetaCart
Abstract not found

Real-time human pose recognition in parts from single depth images

by Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake - In In CVPR, 2011. 3
"... We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler p ..."
Abstract - Cited by 550 (19 self) - Add to MetaCart
We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler

Probabilistic Visual Learning for Object Representation

by Baback Moghaddam, Alex Pentland , 1996
"... We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture-of ..."
Abstract - Cited by 705 (15 self) - Add to MetaCart
We present an unsupervised technique for visual learning which is based on density estimation in high-dimensional spaces using an eigenspace decomposition. Two types of density estimates are derived for modeling the training data: a multivariate Gaussian (for unimodal distributions) and a Mixture

Semi-Supervised Learning Literature Survey

by Xiaojin Zhu , 2006
"... We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a chapter ..."
Abstract - Cited by 757 (8 self) - Add to MetaCart
We review the literature on semi-supervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semi-supervised learning. This document is a

Real-time american sign language recognition using desk and wearable computer based video

by Thad Starner, Joshua Weaver, Alex Pentland - IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , 1998
"... We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American Sign Language (ASL) using a single camera to track the user’s unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy. The secon ..."
Abstract - Cited by 620 (26 self) - Add to MetaCart
We present two real-time hidden Markov model-based systems for recognizing sentence-level continuous American Sign Language (ASL) using a single camera to track the user’s unadorned hands. The first system observes the user from a desk mounted camera and achieves 92 percent word accuracy

Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory

by Richard M. Shiffrin, Walter Schneider - Psychological Review , 1977
"... The two-process theory of detection, search, and attention presented by Schneider and Shiffrin is tested and extended in a series of experiments. The studies demonstrate the qualitative difference between two modes of information processing: automatic detection and controlled search. They trace the ..."
Abstract - Cited by 805 (12 self) - Add to MetaCart
the course of the learning of automatic detection, of categories, and of automaticattention responses. They show the dependence of automatic detection on attending responses and demonstrate how such responses interrupt controlled processing and interfere with the focusing of attention. The learning

The Elements of Statistical Learning -- Data Mining, Inference, and Prediction

by Trevor Hastie, Robert Tibshirani, Jerome Friedman
"... ..."
Abstract - Cited by 1320 (13 self) - Add to MetaCart
Abstract not found

Actions as space-time shapes

by Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, Ronen Basri - In ICCV , 2005
"... Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach [14] for analyzing 2D shapes and genera ..."
Abstract - Cited by 642 (4 self) - Add to MetaCart
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach [14] for analyzing 2D shapes

Transformation-Based Error-Driven Learning and Natural Language Processing: A Case Study in Part-of-Speech Tagging

by Eric Brill - Computational Linguistics , 1995
"... this paper, we will describe a simple rule-based approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study of this learni ..."
Abstract - Cited by 916 (7 self) - Add to MetaCart
this paper, we will describe a simple rule-based approach to automated learning of linguistic knowledge. This approach has been shown for a number of tasks to capture information in a clearer and more direct fashion without a compromise in performance. We present a detailed case study

Face Recognition Based on Fitting a 3D Morphable Model

by Volker Blanz, Thomas Vetter - IEEE Trans. Pattern Anal. Mach. Intell , 2003
"... Abstract—This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm simulates the process of image format ..."
Abstract - Cited by 546 (19 self) - Add to MetaCart
formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set of textured 3D scans of heads. We describe the construction
Next 10 →
Results 1 - 10 of 262,772
Powered by: Apache Solr
  • About CiteSeerX
  • Submit and Index Documents
  • Privacy Policy
  • Help
  • Data
  • Source
  • Contact Us

Developed at and hosted by The College of Information Sciences and Technology

© 2007-2019 The Pennsylvania State University