Results 1  10
of
1,353,181
The tragedy of the commons
 Science
, 1968
"... At the end of a thoughtful article on the future of nuclear war, Wiesner and York (1) concluded that: “Both sides in the arms race are... confronted by the dilemma of steadily increasing military power and steadily decreasing national security. It is our considered professional judgment that this d ..."
Abstract

Cited by 2414 (0 self)
 Add to MetaCart
At the end of a thoughtful article on the future of nuclear war, Wiesner and York (1) concluded that: “Both sides in the arms race are... confronted by the dilemma of steadily increasing military power and steadily decreasing national security. It is our considered professional judgment that this dilemma has no technical solution. If the great powers continue to look for solutions in the area of science and technology only, the result will be to worsen the situation.” I would like to focus your attention not on the subject of the article (national security in a nuclear world) but on the kind of conclusion they reached, namely that there
The struggle to govern the commons
 Science
, 2003
"... Human institutions—ways of organizing activities—affect the resilience of the environment. Locally evolved institutional arrangements governed by stable communities and buffered from outside forces have sustained resources successfully for centuries, although they often fail when rapid change occu ..."
Abstract

Cited by 624 (14 self)
 Add to MetaCart
parties, officials, and scientists; complex, redundant, and layered institutions; a mix of institutional types; and designs that facilitate experimentation, learning, and change. In 1968, Hardin (1) drew attention to two human factors that drive environmental change. The first factor is the increasing de
Knowledge and Common Knowledge in a Distributed Environment
 Journal of the ACM
, 1984
"... : Reasoning about knowledge seems to play a fundamental role in distributed systems. Indeed, such reasoning is a central part of the informal intuitive arguments used in the design of distributed protocols. Communication in a distributed system can be viewed as the act of transforming the system&apo ..."
Abstract

Cited by 577 (55 self)
 Add to MetaCart
corresponds to knowledge that is "distributed" among the members of the group, while common knowledge corresponds to a fact being "publicly known". The relationship between common knowledge and a variety of desirable actions in a distributed system is illustrated. Furthermore, it is shown
Very simple classification rules perform well on most commonly used datasets
 Machine Learning
, 1993
"... The classification rules induced by machine learning systems are judged by two criteria: their classification accuracy on an independent test set (henceforth "accuracy"), and their complexity. The relationship between these two criteria is, of course, of keen interest to the machin ..."
Abstract

Cited by 542 (5 self)
 Add to MetaCart
The classification rules induced by machine learning systems are judged by two criteria: their classification accuracy on an independent test set (henceforth "accuracy"), and their complexity. The relationship between these two criteria is, of course, of keen interest
Reinforcement Learning I: Introduction
, 1998
"... In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection, search ..."
Abstract

Cited by 5500 (120 self)
 Add to MetaCart
In which we try to give a basic intuitive sense of what reinforcement learning is and how it differs and relates to other fields, e.g., supervised learning and neural networks, genetic algorithms and artificial life, control theory. Intuitively, RL is trial and error (variation and selection
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias
Learning probabilistic relational models
 In IJCAI
, 1999
"... A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much ..."
Abstract

Cited by 619 (31 self)
 Add to MetaCart
A large portion of realworld data is stored in commercial relational database systems. In contrast, most statistical learning methods work only with "flat " data representations. Thus, to apply these methods, we are forced to convert our data into a flat form, thereby losing much
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn
Active Learning with Statistical Models
, 1995
"... For manytypes of learners one can compute the statistically "optimal" way to select data. We review how these techniques have been used with feedforward neural networks [MacKay, 1992# Cohn, 1994]. We then showhow the same principles may be used to select data for two alternative, statist ..."
Abstract

Cited by 677 (12 self)
 Add to MetaCart
, statisticallybased learning architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted regression are both efficient and accurate.
Ensemble Methods in Machine Learning
 MULTIPLE CLASSIFIER SYSTEMS, LBCS1857
, 2000
"... Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging, and boostin ..."
Abstract

Cited by 607 (3 self)
 Add to MetaCart
Ensemble methods are learning algorithms that construct a set of classifiers and then classify new data points by taking a (weighted) vote of their predictions. The original ensemble method is Bayesian averaging, but more recent algorithms include errorcorrecting output coding, Bagging
Results 1  10
of
1,353,181