Results 1  10
of
1,421,954
A Framework for Dynamic Graph Drawing
 CONGRESSUS NUMERANTIUM
, 1992
"... Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized as follows ..."
Abstract

Cited by 627 (44 self)
 Add to MetaCart
Drawing graphs is an important problem that combines flavors of computational geometry and graph theory. Applications can be found in a variety of areas including circuit layout, network management, software engineering, and graphics. The main contributions of this paper can be summarized
Community detection in graphs
, 2009
"... The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of th ..."
Abstract

Cited by 801 (1 self)
 Add to MetaCart
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices
The irreducibility of the space of curves of given genus
 Publ. Math. IHES
, 1969
"... Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k ~ ..."
Abstract

Cited by 512 (2 self)
 Add to MetaCart
Fix an algebraically closed field k. Let Mg be the moduli space of curves of genus g over k. The main result of this note is that Mg is irreducible for every k. Of course, whether or not M s is irreducible depends only on the characteristic of k. When the characteristic s o, we can assume that k
Parameterized Complexity
, 1998
"... the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs ..."
Abstract

Cited by 1218 (75 self)
 Add to MetaCart
the rapidly developing systematic connections between FPT and useful heuristic algorithms  a new and exciting bridge between the theory of computing and computing in practice. The organizers of the seminar strongly believe that knowledge of parameterized complexity techniques and results belongs
Detection and Tracking of Point Features
 International Journal of Computer Vision
, 1991
"... The factorization method described in this series of reports requires an algorithm to track the motion of features in an image stream. Given the small interframe displacement made possible by the factorization approach, the best tracking method turns out to be the one proposed by Lucas and Kanade i ..."
Abstract

Cited by 622 (2 self)
 Add to MetaCart
leads to a NewtonRaphson style minimization. In this report, after rederiving the method in a physically intuitive way, we answer the crucial question of how to choose the feature windows that are best suited for tracking. Our selection criterion is based directly on the definition of the tracking
The use of the area under the ROC curve in the evaluation of machine learning algorithms
 Pattern Recognition
, 1997
"... AbstractIn this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multilayer Percept ..."
Abstract

Cited by 664 (3 self)
 Add to MetaCart
AbstractIn this paper we investigate the use of the area under the receiver operating characteristic (ROC) curve (AUC) as a performance measure for machine learning algorithms. As a case study we evaluate six machine learning algorithms (C4.5, Multiscale Classifier, Perceptron, Multi
Singularity Detection And Processing With Wavelets
 IEEE Transactions on Information Theory
, 1992
"... Most of a signal information is often found in irregular structures and transient phenomena. We review the mathematical characterization of singularities with Lipschitz exponents. The main theorems that estimate local Lipschitz exponents of functions, from the evolution across scales of their wavele ..."
Abstract

Cited by 590 (13 self)
 Add to MetaCart
of their wavelet transform are explained. We then prove that the local maxima of a wavelet transform detect the location of irregular structures and provide numerical procedures to compute their Lipschitz exponents. The wavelet transform of singularities with fast oscillations have a different behavior that we
Edge Detection
, 1985
"... For both biological systems and machines, vision begins with a large and unwieldy array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene, such as the location of object boundaries and the s ..."
Abstract

Cited by 1277 (1 self)
 Add to MetaCart
about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processg has led to extensive research on their detection, description and .use, both in computer and biological vision systems. This article
A computational approach to edge detection
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1986
"... AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal ..."
Abstract

Cited by 4621 (0 self)
 Add to MetaCart
AbstractThis paper describes a computational approach to edge detection. The success of the approach depends on the definition of a comprehensive set of goals for the computation of edge points. These goals must be precise enough to delimit the desired behavior of the detector while making minimal
Results 1  10
of
1,421,954