Results 1  10
of
1,616,626
Lattice Computers for Approximating Euclidean Space
 Journal of the ACM
, 2001
"... In the context of meshlike, parallel processing computers for (i) approximating continuous space and (ii) analog simulation of the motion of objects and waves in continuous space, the present paper is concerned with which meshlike interconnection of processors might be particularly suitable for th ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
In the context of meshlike, parallel processing computers for (i) approximating continuous space and (ii) analog simulation of the motion of objects and waves in continuous space, the present paper is concerned with which meshlike interconnection of processors might be particularly suitable
The space complexity of approximating the frequency moments
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 1996
"... The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly, ..."
Abstract

Cited by 855 (12 self)
 Add to MetaCart
The frequency moments of a sequence containing mi elements of type i, for 1 ≤ i ≤ n, are the numbers Fk = �n i=1 mki. We consider the space complexity of randomized algorithms that approximate the numbers Fk, when the elements of the sequence are given one by one and cannot be stored. Surprisingly
Polynomial time approximation schemes for Euclidean TSP and other geometric problems
 In Proceedings of the 37th IEEE Symposium on Foundations of Computer Science (FOCS’96
, 1996
"... Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes a ..."
Abstract

Cited by 399 (3 self)
 Add to MetaCart
Abstract. We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c � 1 and given any n nodes in � 2, a randomized version of the scheme finds a (1 � 1/c)approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes
LatticeBased Access Control Models
, 1993
"... The objective of this article is to give a tutorial on latticebased access control models for computer security. The paper begins with a review of Denning's axioms for information flow policies, which provide a theoretical foundation for these models. The structure of security labels in the ..."
Abstract

Cited by 1485 (56 self)
 Add to MetaCart
The objective of this article is to give a tutorial on latticebased access control models for computer security. The paper begins with a review of Denning's axioms for information flow policies, which provide a theoretical foundation for these models. The structure of security labels
Simulating Physics with Computers
 SIAM Journal on Computing
, 1982
"... A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. ..."
Abstract

Cited by 601 (1 self)
 Add to MetaCart
A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time of at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration
Spacetime Interest Points
 IN ICCV
, 2003
"... Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be use ..."
Abstract

Cited by 791 (22 self)
 Add to MetaCart
Local image features or interest points provide compact and abstract representations of patterns in an image. In this paper, we propose to extend the notion of spatial interest points into the spatiotemporal domain and show how the resulting features often reflect interesting events that can be used for a compact representation of video data as well as for its interpretation.. To detect
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 1017 (40 self)
 Add to MetaCart
dimensional Euclidean space where X = ! d under some l p norm. Despite decades of effort, the current solutions are far from satisfactory; in fact, for large d, in theory or in practice, they provide little improvement over the bruteforce algorithm which compares the query point to each data point. Of late
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 1231 (13 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds
Greedy Function Approximation: A Gradient Boosting Machine
 Annals of Statistics
, 2000
"... Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed for additi ..."
Abstract

Cited by 951 (12 self)
 Add to MetaCart
Function approximation is viewed from the perspective of numerical optimization in function space, rather than parameter space. A connection is made between stagewise additive expansions and steepest{descent minimization. A general gradient{descent \boosting" paradigm is developed
Results 1  10
of
1,616,626