Results 1  10
of
913,672
Large Circuits in Binary Matroids of Large Cogirth: I
"... Let F 7 denote the Fano matroid and e be a fixed element of F 7 . Let P (F 7 ; e) be the family of matroids obtained by taking the parallel connection of one or more copies of F 7 about e. Let M be a simple binary matroid such that every cocircuit of M has size at least d 3. We show that if M d ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Let F 7 denote the Fano matroid and e be a fixed element of F 7 . Let P (F 7 ; e) be the family of matroids obtained by taking the parallel connection of one or more copies of F 7 about e. Let M be a simple binary matroid such that every cocircuit of M has size at least d 3. We show that if M
Large margin methods for structured and interdependent output variables
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2005
"... Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary ..."
Abstract

Cited by 612 (12 self)
 Add to MetaCart
to accomplish this, we propose to appropriately generalize the wellknown notion of a separation margin and derive a corresponding maximummargin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm
Large Margin Classification Using the Perceptron Algorithm
 Machine Learning
, 1998
"... We introduce and analyze a new algorithm for linear classification which combines Rosenblatt 's perceptron algorithm with Helmbold and Warmuth's leaveoneout method. Like Vapnik 's maximalmargin classifier, our algorithm takes advantage of data that are linearly separable with large ..."
Abstract

Cited by 518 (2 self)
 Add to MetaCart
with large margins. Compared to Vapnik's algorithm, however, ours is much simpler to implement, and much more efficient in terms of computation time. We also show that our algorithm can be efficiently used in very high dimensional spaces using kernel functions. We performed some experiments using our
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 514 (41 self)
 Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential input
Making LargeScale Support Vector Machine Learning Practical
, 1998
"... Training a support vector machine (SVM) leads to a quadratic optimization problem with bound constraints and one linear equality constraint. Despite the fact that this type of problem is well understood, there are many issues to be considered in designing an SVM learner. In particular, for large lea ..."
Abstract

Cited by 620 (1 self)
 Add to MetaCart
algorithmic and computational results developed for SVM light V2.0, which make largescale SVM training more practical. The results give guidelines for the application of SVMs to large domains.
Mining Association Rules between Sets of Items in Large Databases
 IN: PROCEEDINGS OF THE 1993 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, WASHINGTON DC (USA
, 1993
"... We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel esti ..."
Abstract

Cited by 3260 (17 self)
 Add to MetaCart
We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel
Scatter/Gather: A Clusterbased Approach to Browsing Large Document Collections
, 1992
"... Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably ..."
Abstract

Cited by 772 (12 self)
 Add to MetaCart
Document clustering has not been well received as an information retrieval tool. Objections to its use fall into two main categories: first, that clustering is too slow for large corpora (with running time often quadratic in the number of documents); and second, that clustering does not appreciably
Valgrind: A framework for heavyweight dynamic binary instrumentation
 In Proceedings of the 2007 Programming Language Design and Implementation Conference
, 2007
"... Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI ha ..."
Abstract

Cited by 545 (5 self)
 Add to MetaCart
Dynamic binary instrumentation (DBI) frameworks make it easy to build dynamic binary analysis (DBA) tools such as checkers and profilers. Much of the focus on DBI frameworks has been on performance; little attention has been paid to their capabilities. As a result, we believe the potential of DBI
Iterative decoding of binary block and convolutional codes
 IEEE Trans. Inform. Theory
, 1996
"... Abstract Iterative decoding of twodimensional systematic convolutional codes has been termed “turbo ” (de)coding. Using loglikelihood algebra, we show that any decoder can he used which accepts soft inputsincluding a priori valuesand delivers soft outputs that can he split into three terms: the ..."
Abstract

Cited by 600 (43 self)
 Add to MetaCart
: the soft channel and a priori inputs, and the extrinsic value. The extrinsic value is used as an a priori value for the next iteration. Decoding algorithms in the loglikelihood domain are given not only for convolutional codes hut also for any linear binary systematic block code. The iteration
Sampling Large Databases for Association Rules
, 1996
"... Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce the data ..."
Abstract

Cited by 465 (4 self)
 Add to MetaCart
Discovery of association rules is an important database mining problem. Current algorithms for nding association rules require several passes over the analyzed database, and obviously the role of I/O overhead is very signi cant for very large databases. We present new algorithms that reduce
Results 1  10
of
913,672