Results 1  10
of
893,157
Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
 Advances in Neural Information Processing Systems 14
, 2001
"... Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a higher ..."
Abstract

Cited by 664 (8 self)
 Add to MetaCart
Drawing on the correspondence between the graph Laplacian, the LaplaceBeltrami operator on a manifold, and the connections to the heat equation, we propose a geometrically motivated algorithm for constructing a representation for data sampled from a low dimensional manifold embedded in a
Network information flow
 IEEE TRANS. INFORM. THEORY
, 2000
"... We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information source ..."
Abstract

Cited by 1961 (24 self)
 Add to MetaCart
We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a pointtopoint communication network on which a number of information sources are to be mulitcast to certain sets of destinations. We assume that the information
Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow
, 1999
"... In this paper, we develop methods to rapidly remove rough features from irregularly triangulated data intended to portray a smooth surface. The main task is to remove undesirable noise and uneven edges while retaining desirable geometric features. The problem arises mainly when creating highfidelit ..."
Abstract

Cited by 553 (24 self)
 Add to MetaCart
fidelity computer graphics objects using imperfectlymeasured data from the real world. Our approach contains three novel features: an implicit integration method to achieve efficiency, stability, and large timesteps; a scaledependent Laplacian operator to improve the diffusion process; and finally, a robust
Theoretical improvements in algorithmic efficiency for network flow problems

, 1972
"... This paper presents new algorithms for the maximum flow problem, the Hitchcock transportation problem, and the general minimumcost flow problem. Upper bounds on ... the numbers of steps in these algorithms are derived, and are shown to compale favorably with upper bounds on the numbers of steps req ..."
Abstract

Cited by 565 (0 self)
 Add to MetaCart
are given. We show that, if each flow augmentation is made along an augmenting path having a minimum number of arcs, then a maximum flow in an nnode network will be obtained after no more than ~(n a n) augmentations; and then we show that if each flow change is chosen to produce a maximum increase
OpenFlow: Enabling Innovation in Campus Networks
"... This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online. This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks ..."
Abstract

Cited by 679 (84 self)
 Add to MetaCart
This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online. This whitepaper proposes OpenFlow: a way for researchers to run experimental protocols in the networks
Finding community structure in networks using the eigenvectors of matrices
, 2006
"... We consider the problem of detecting communities or modules in networks, groups of vertices with a higherthanaverage density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity ” over possible div ..."
Abstract

Cited by 500 (0 self)
 Add to MetaCart
divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a
Consensus and cooperation in networked multiagent systems
 PROCEEDINGS OF THE IEEE
"... This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview of ..."
Abstract

Cited by 772 (2 self)
 Add to MetaCart
This paper provides a theoretical framework for analysis of consensus algorithms for multiagent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, timedelays, and performance guarantees. An overview
Token flow control
"... As companies move towards manycore chips, an efficient onchip communication fabric to connect these cores assumes critical importance. To address limitations to wire delay scalability and increasing bandwidth demands, stateoftheart onchip networks use a modular packetswitched design with route ..."
Abstract

Cited by 627 (35 self)
 Add to MetaCart
with routers at every hop which allow sharing of network channels over multiple packet flows. This, however, leads to packets going through a complex router pipeline at every hop, resulting in the overall communication energy/delay being dominated by the router overhead, as opposed to just wire energy
Cognitive networks
 in Proc. of IEEE DySPAN 2005
, 2005
"... Abstract — This paper presents a definition and framework for a novel type of adaptive data network: the cognitive network. In a cognitive network, the collection of elements that make up the network observes network conditions and then, using prior knowledge gained from previous interactions with t ..."
Abstract

Cited by 1090 (7 self)
 Add to MetaCart
with the network, plans, decides and acts on this information. Cognitive networks are different from other “intelligent ” communication technologies because these actions are taken with respect to the endtoend goals of a data flow. In addition to the cognitive aspects of the network, a specification language
Determining Optical Flow
 ARTIFICIAL INTELLIGENCE
, 1981
"... Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent veloc ..."
Abstract

Cited by 2379 (9 self)
 Add to MetaCart
Optical flow cannot be computed locally, since only one independent measurement is available from the image sequence at a point, while the flow velocity has two components. A second constraint is needed. A method for finding the optical flow pattern is presented which assumes that the apparent
Results 1  10
of
893,157