Results 1  10
of
861,819
Mining Sequential Patterns
, 1995
"... We are given a large database of customer transactions, where each transaction consists of customerid, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empiri ..."
Abstract

Cited by 1534 (7 self)
 Add to MetaCart
, and empirically evaluate their performance using synthetic data. Two of the proposed algorithms, AprioriSome and AprioriAll, have comparable performance, albeit AprioriSome performs a little better when the minimum number of customers that must support a sequential pattern is low. Scaleup experiments show
SIS: A System for Sequential Circuit Synthesis
, 1992
"... SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential inputoutput b ..."
Abstract

Cited by 514 (41 self)
 Add to MetaCart
SIS is an interactive tool for synthesis and optimization of sequential circuits. Given a state transition table, a signal transition graph, or a logiclevel description of a sequential circuit, it produces an optimized netlist in the target technology while preserving the sequential input
Fisher Discriminant Analysis With Kernels
, 1999
"... A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision f ..."
Abstract

Cited by 493 (18 self)
 Add to MetaCart
A nonlinear classification technique based on Fisher's discriminant is proposed. The main ingredient is the kernel trick which allows the efficient computation of Fisher discriminant in feature space. The linear classification in feature space corresponds to a (powerful) nonlinear decision
The xKernel: An Architecture for Implementing Network Protocols
 IEEE Transactions on Software Engineering
, 1991
"... This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough to acc ..."
Abstract

Cited by 663 (21 self)
 Add to MetaCart
This paper describes a new operating system kernel, called the xkernel, that provides an explicit architecture for constructing and composing network protocols. Our experience implementing and evaluating several protocols in the xkernel shows that this architecture is both general enough
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Dryad: Distributed DataParallel Programs from Sequential Building Blocks
 In EuroSys
, 2007
"... Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set of availa ..."
Abstract

Cited by 730 (27 self)
 Add to MetaCart
Dryad is a generalpurpose distributed execution engine for coarsegrain dataparallel applications. A Dryad application combines computational “vertices ” with communication “channels ” to form a dataflow graph. Dryad runs the application by executing the vertices of this graph on a set
Mining Sequential Patterns: Generalizations and Performance Improvements
 Research Report RJ 9994, IBM Almaden Research
, 1995
"... Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a user ..."
Abstract

Cited by 748 (5 self)
 Add to MetaCart
Abstract. The problem of mining sequential patterns was recently introduced in [3]. We are given a database of sequences, where each sequence is a list of transactions ordered by transactiontime, and each transaction is a set of items. The problem is to discover all sequential patterns with a user
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Multiple kernel learning, conic duality, and the SMO algorithm
 In Proceedings of the 21st International Conference on Machine Learning (ICML
, 2004
"... While classical kernelbased classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimiz ..."
Abstract

Cited by 450 (31 self)
 Add to MetaCart
that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as a quadraticallyconstrained quadratic program (QCQP). Unfortunately, current convex optimization toolboxes can solve this problem only for a small number of kernels and a small number of data points
On Sequential Monte Carlo Sampling Methods for Bayesian Filtering
 STATISTICS AND COMPUTING
, 2000
"... In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework is develop ..."
Abstract

Cited by 1032 (76 self)
 Add to MetaCart
In this article, we present an overview of methods for sequential simulation from posterior distributions. These methods are of particular interest in Bayesian filtering for discrete time dynamic models that are typically nonlinear and nonGaussian. A general importance sampling framework
Results 1  10
of
861,819