Results 1  10
of
467,324
Kernel Dimensionality Reduction for Supervised Learning
 in Proc. NIPS
, 2003
"... We propose a novel method of dimensionality reduction for supervised learning. Given a regression or classification problem in which we wish to predict a variable Y from an explanatory vector X, we treat the problem of dimensionality reduction as that of finding a lowdimensional “effective subspace ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
We propose a novel method of dimensionality reduction for supervised learning. Given a regression or classification problem in which we wish to predict a variable Y from an explanatory vector X, we treat the problem of dimensionality reduction as that of finding a lowdimensional “effective
Kernel Dimensionality Reduction for SupervisedLearning
"... Abstract We propose a novel method of dimensionality reduction for supervisedlearning. Given a regression or classification problem in which we wish to predict a variable Y from an explanatory vector X, we treat the problem of dimensionality reduction as that of finding a lowdimensional " ..."
Abstract
 Add to MetaCart
the original set. Motivations for such dimensionality reduction include providing a simplified explanation and visualization for a human, suppressing noiseso as to make a better prediction or decision, or reducing the computational burden. We study dimensionality reduction for supervised learning, in which
SemiSupervised Learning Literature Survey
, 2006
"... We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a chapter ..."
Abstract

Cited by 757 (8 self)
 Add to MetaCart
We review the literature on semisupervised learning, which is an area in machine learning and more generally, artificial intelligence. There has been a whole
spectrum of interesting ideas on how to learn from both labeled and unlabeled data, i.e. semisupervised learning. This document is a
Nonlinear component analysis as a kernel eigenvalue problem

, 1996
"... We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all ..."
Abstract

Cited by 1554 (85 self)
 Add to MetaCart
We describe a new method for performing a nonlinear form of Principal Component Analysis. By the use of integral operator kernel functions, we can efficiently compute principal components in highdimensional feature spaces, related to input space by some nonlinear map; for instance the space of all
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
 Neural Computation
, 2003
"... Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing on the corr ..."
Abstract

Cited by 1205 (16 self)
 Add to MetaCart
Abstract One of the central problems in machine learning and pattern recognition is to develop appropriate representations for complex data. We consider the problem of constructing a representation for data lying on a low dimensional manifold embedded in a high dimensional space. Drawing
Local features and kernels for classification of texture and object categories: a comprehensive study
 International Journal of Computer Vision
, 2007
"... Recently, methods based on local image features have shown promise for texture and object recognition tasks. This paper presents a largescale evaluation of an approach that represents images as distributions (signatures or histograms) of features extracted from a sparse set of keypoint locations an ..."
Abstract

Cited by 644 (35 self)
 Add to MetaCart
and learns a Support Vector Machine classifier with kernels based on two effective measures for comparing distributions, the Earth Mover’s Distance and the χ 2 distance. We first evaluate the performance of our approach with different keypoint detectors and descriptors, as well as different kernels
Gaussian processes for machine learning
 in: Adaptive Computation and Machine Learning
, 2006
"... Abstract. We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperpar ..."
Abstract

Cited by 631 (2 self)
 Add to MetaCart
the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work. Supervised learning in the form of regression (for continuous outputs) and classification (for discrete outputs) is an important constituent
Sparse Bayesian Learning and the Relevance Vector Machine
, 2001
"... This paper introduces a general Bayesian framework for obtaining sparse solutions to regression and classication tasks utilising models linear in the parameters. Although this framework is fully general, we illustrate our approach with a particular specialisation that we denote the `relevance vec ..."
Abstract

Cited by 958 (5 self)
 Add to MetaCart
vector machine' (RVM), a model of identical functional form to the popular and stateoftheart `support vector machine' (SVM). We demonstrate that by exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction models which typically utilise dramatically fewer
Estimating the Support of a HighDimensional Distribution
, 1999
"... Suppose you are given some dataset drawn from an underlying probability distribution P and you want to estimate a "simple" subset S of input space such that the probability that a test point drawn from P lies outside of S is bounded by some a priori specified between 0 and 1. We propo ..."
Abstract

Cited by 766 (29 self)
 Add to MetaCart
propose a method to approach this problem by trying to estimate a function f which is positive on S and negative on the complement. The functional form of f is given by a kernel expansion in terms of a potentially small subset of the training data; it is regularized by controlling the length
Results 1  10
of
467,324