Results 1  10
of
1,713,129
A simple approach to valuing risky fixed and floating rate debt
 Journal of Finance
, 1995
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 588 (11 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Preference Parameters And Behavioral Heterogeneity: An Experimental Approach In The Health And Retirement Study
, 1997
"... This paper reports measures of preference parameters relating to risk tolerance, time preference, and intertemporal substitution. These measures are based on survey responses to hypothetical situations constructed using an economic theorist's concept of the underlying parameters. The individual ..."
Abstract

Cited by 524 (12 self)
 Add to MetaCart
This paper reports measures of preference parameters relating to risk tolerance, time preference, and intertemporal substitution. These measures are based on survey responses to hypothetical situations constructed using an economic theorist's concept of the underlying parameters
Fixedparameter tractability and completeness
, 1992
"... For many fixedparameter problems that are trivially solvable in polynomialtime, such as kDominating Set, essentially no better algorithm is presently known than the one which tries all possible solutions. Other problems, such as kFeedback Vertex Set, exhibit fixedparameter tractability: for eac ..."
Abstract

Cited by 53 (6 self)
 Add to MetaCart
For many fixedparameter problems that are trivially solvable in polynomialtime, such as kDominating Set, essentially no better algorithm is presently known than the one which tries all possible solutions. Other problems, such as kFeedback Vertex Set, exhibit fixedparameter tractability
Tractable inference for complex stochastic processes
 In Proc. UAI
, 1998
"... The monitoring and control of any dynamic system depends crucially on the ability to reason about its current status and its future trajectory. In the case of a stochastic system, these tasks typically involve the use of a belief state—a probability distribution over the state of the process at a gi ..."
Abstract

Cited by 306 (15 self)
 Add to MetaCart
The monitoring and control of any dynamic system depends crucially on the ability to reason about its current status and its future trajectory. In the case of a stochastic system, these tasks typically involve the use of a belief state—a probability distribution over the state of the process at a given point in time. Unfortunately, the state spaces of complex processes are very large, making an explicit representation of a belief state intractable. Even in dynamic Bayesian networks (DBNs), where the process itself can be represented compactly, the representation of the belief state is intractable. We investigate the idea of maintaining a compact approximation to the true belief state, and analyze the conditions under which the errors due to the approximations taken over the lifetime of the process do not accumulate to make our answers completely irrelevant. We show that the error in a belief state contracts exponentially as the process evolves. Thus, even with multiple approximations, the error in our process remains bounded indefinitely. We show how the additional structure of a DBN can be used to design our approximation scheme, improving its performance significantly. We demonstrate the applicability of our ideas in the context of a monitoring task, showing that orders of magnitude faster inference can be achieved with only a small degradation in accuracy. 1
Books in graphs
, 2008
"... A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α) ..."
Abstract

Cited by 2380 (22 self)
 Add to MetaCart
A set of q triangles sharing a common edge is called a book of size q. We write β (n, m) for the the maximal q such that every graph G (n, m) contains a book of size q. In this note 1) we compute β ( n, cn 2) for infinitely many values of c with 1/4 < c < 1/3, 2) we show that if m ≥ (1/4 − α
Fast Parallel Algorithms for ShortRange Molecular Dynamics
 JOURNAL OF COMPUTATIONAL PHYSICS
, 1995
"... Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of interatomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dyn ..."
Abstract

Cited by 622 (6 self)
 Add to MetaCart
. The algorithms are tested on a standard LennardJones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers  the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray YMP and C90 algorithm shows
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1513 (20 self)
 Add to MetaCart
law), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball
Results 1  10
of
1,713,129