Results 1  10
of
405,213
Jordan Matrix Decomposition
, 2008
"... In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form M = SJS −1 where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diag ..."
Abstract
 Add to MetaCart
In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form M = SJS −1 where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block
Tensor Decompositions and Applications
 SIAM REVIEW
, 2009
"... This survey provides an overview of higherorder tensor decompositions, their applications, and available software. A tensor is a multidimensional or N way array. Decompositions of higherorder tensors (i.e., N way arrays with N â¥ 3) have applications in psychometrics, chemometrics, signal proce ..."
Abstract

Cited by 705 (17 self)
 Add to MetaCart
processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, etc. Two particular tensor decompositions can be considered to be higherorder extensions of the matrix singular value decompo
sition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum
Learning the Kernel Matrix with SemiDefinite Programming
, 2002
"... Kernelbased learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information ..."
Abstract

Cited by 780 (22 self)
 Add to MetaCart
is contained in the socalled kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input spaceclassical model selection
Algorithms for Nonnegative Matrix Factorization
 In NIPS
, 2001
"... Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown to minim ..."
Abstract

Cited by 1230 (5 self)
 Add to MetaCart
Nonnegative matrix factorization (NMF) has previously been shown to be a useful decomposition for multivariate data. Two different multiplicative algorithms for NMF are analyzed. They differ only slightly in the multiplicative factor used in the update rules. One algorithm can be shown
A multilinear singular value decomposition
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc., are ..."
Abstract

Cited by 467 (20 self)
 Add to MetaCart
Abstract. We discuss a multilinear generalization of the singular value decomposition. There is a strong analogy between several properties of the matrix and the higherorder tensor decomposition; uniqueness, link with the matrix eigenvalue decomposition, firstorder perturbation effects, etc
Probabilistic Latent Semantic Analysis
 In Proc. of Uncertainty in Artificial Intelligence, UAI’99
, 1999
"... Probabilistic Latent Semantic Analysis is a novel statistical technique for the analysis of twomode and cooccurrence data, which has applications in information retrieval and filtering, natural language processing, machine learning from text, and in related areas. Compared to standard Latent Sema ..."
Abstract

Cited by 760 (9 self)
 Add to MetaCart
Semantic Analysis which stems from linear algebra and performs a Singular Value Decomposition of cooccurrence tables, the proposed method is based on a mixture decomposition derived from a latent class model. This results in a more principled approach which has a solid foundation in statistics. In order
Shape and motion from image streams under orthography: a factorization method
 INTERNATIONAL JOURNAL OF COMPUTER VISION
, 1992
"... Inferring scene geometry and camera motion from a stream of images is possible in principle, but is an illconditioned problem when the objects are distant with respect to their size. We have developed a factorization method that can overcome this difficulty by recovering shape and motion under orth ..."
Abstract

Cited by 1090 (39 self)
 Add to MetaCart
uses the singularvalue decomposition technique to factor the measurement matrix into two matrices which represent object shape and camera rotation respectively. Two of the three translation components are computed in a preprocessing stage. The method can also handle and obtain a full solution from a
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 573 (8 self)
 Add to MetaCart
. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We
Indexing by latent semantic analysis
 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE
, 1990
"... A new method for automatic indexing and retrieval is described. The approach is to take advantage of implicit higherorder structure in the association of terms with documents (“semantic structure”) in order to improve the detection of relevant documents on the basis of terms found in queries. The p ..."
Abstract

Cited by 3723 (35 self)
 Add to MetaCart
. The particular technique used is singularvalue decomposition, in which a large term by document matrix is decomposed into a set of ca. 100 orthogonal factors from which the original matrix can be approximated by linear combination. Documents are represented by ca. 100 item vectors of factor weights. Queries
Parallel Numerical Linear Algebra
, 1993
"... We survey general techniques and open problems in numerical linear algebra on parallel architectures. We first discuss basic principles of parallel processing, describing the costs of basic operations on parallel machines, including general principles for constructing efficient algorithms. We illust ..."
Abstract

Cited by 766 (23 self)
 Add to MetaCart
illustrate these principles using current architectures and software systems, and by showing how one would implement matrix multiplication. Then, we present direct and iterative algorithms for solving linear systems of equations, linear least squares problems, the symmetric eigenvalue problem
Results 1  10
of
405,213